
Noname manuscript No.
(will be inserted by the editor)

Which XML schemas are streaming bounded repairable?

Pierre Bourhis ⋅ Gabriele Puppis ⋅

Cristian Riveros

Received: date / Accepted: date

Abstract In this paper we consider the problem of repairing, that is, restoring
validity of, documents with respect to XML schemas. We formalize this as the
problem of determining, given an XML schema, whether or not a streaming pro-
cedure exists that transforms an input document so as to satisfy the XML schema,
using a number of edits independent of the document. We show that this prob-
lem is decidable. In fact, we show the decidability of a more general problem,
which allows the repair procedure to work on documents that are already known
to satisfy another XML schema. The decision procedure relies on the analysis of
the structure of an automaton model specifying the restriction and target XML
schemas and reduces te problem to a novel notion of game played on pushdown
systems associated with the schemas.

Keywords bounded repair ⋅ streaming repair ⋅ DTD ⋅ XML Schema ⋅ top-down
deterministic tree automaton

1 Introduction

A basic problem in data management is to ensure that data is valid – that is,
satisfies all integrity constraints associated with a schema. A particularly attractive
feature of XML documents is that the notion of valid data can be captured in
an expressive yet highly intuitive language – that of Document Type Definitions
(DTDs) and more generally XML schemas [16]. DTDs and XML schemas are

Pierre Bourhis
CNRS, LIFL Université Lille 1 and INRIA Lille Nord Europe
E-mail: pierre.bourhis@univ-lille1.fr

Gabriele Puppis
CNRS, LaBRI Université Bordeaux
E-mail: gabriele.puppis@labri.fr

Cristian Riveros
Pontificia Universidad Católica de Chile
E-mail: criveros@ing.puc.cl

2 Pierre Bourhis et al.

heavily used in practice, and the basic validation task can be performed in a one-
pass process using limited memory, that is, they admit streaming validation [12,14,
19].

For many XML-based applications, the desired behaviour when data integrity
constraints fail is not simply to raise an error, but to fix it. The most obvious ex-
ample of this is for HTML. Mal-formed or non-conformant HTML is more the rule
than the exception, and browsers react to non-conformant documents by simply
changing them to conformant ones. That is, repair is a well-accepted procedure for
XML-based data.

In this paper, we tackle the question of which schemas admit ‘streaming repair’,
an analogue of streaming validation. Intuitively, a streaming repair is a procedure
that inserts, deletes, or modifies document content while reading the document in
pre-order fashion, producing an output that satisfies the constraint. Clearly, there
is a vacuous streaming repair that simply deletes the entire document and inserts
a new document that satisfies the constraints. The unacceptability of such a repair
strategy stems from the fact that the number of changes it makes to a document
is proportional to its size. Clearly, we would like a stream repair processor to make
a ‘small’ number of changes to the input. We formalize this requirement via the
notion of a bounded repair strategy [18], i.e. a repair strategy that makes a maximum
number of repairs that is finite and independent of the input document. Although
less stringent notions of ‘small repair’ can be demanded (e.g. by requiring that a
small percentage of the document be repaired, analogous to the notion explored
for words in [4]) we feel this is a natural starting point for the exploration of
streaming repair.

We follow our previous work in the non-streaming setting [18] by looking at the
general scenario where there is a restriction schema which the document is assumed
to satisfy and a target schema that we wish to enforce. We study the problem of
determining whether there is a stream processor that will (i) ensure that any
document satisfying the restriction is repaired to a document satisfying the target
and (ii) performs a number of edits that is uniformly bounded and independent
of the document. We consider only the tag structure of the documents, ignoring
string content. Moreover, the edits we consider are the standard tree edits [7]. Our
prior work [18] gave a characterization and decision procedure for determining
whether a bounded repair strategy exists in the non-streaming setting. In this
work we give a characterization and decision procedure for determining whether a
streaming bounded repair strategy exists, in the important case of DTD schemas,
and more generally of ‘top-down deterministic schemas’ (the formal definition is
given in Section 2, but for now let us only remark that this is a class that subsumes
not only DTDs, but also XSDs).

The solution to the streaming bounded repair problem is challenging both from
the point of view of giving a characterization, and showing that it is both effective
and correct. The first part of the solution is adapted from our prior work [18]: we
associate a graph with each schema, and then look at the corresponding notion
of connected component; such a component represents a ‘repeatable behaviour’,
namely, a family of trees that can be generated by a certain kind of pumping
operation. Our characterization will involve a novel game played on stacks of com-
ponents in the two graphs, with one player, called Generator, managing the stack
for the restriction and corresponding to generation of families of trees satisfying
the restriction schema, and the other player, called Repairer, managing the stack

Which XML schemas are streaming bounded repairable? 3

for the target. Repairer needs to play in such a way that a certain relation holds
between the components on the top of the stacks, corresponding to containment
of a set of trees. The characterization theorem says that a streaming repair with
uniformly bounded cost is possible exactly when Repairer has a winning strategy
in the game. The possible moves of Generator will be restricted in a way that
ensures finiteness of the game, and thus decidability of a winner.

Both directions of the proof of our characterization are highly non-trivial. In
one direction, we manufacture an effective document repair transducer from a
winning strategy for Repairer. In the other, we use a repair transducer of uniformly
bounded cost to get a winning strategy for Repairer.

With our characterization in hand, we are able to give an EXPTIME upper
bound on the complexity of determining the existence of a streaming repair strat-
egy of uniformly bounded cost. We complement this with a matching lower bound,
and go on to isolate subcases where the complexity decreases (to PSPACE).

In summary our contributions are:

1. We formalize the property of bounded repairability for languages of unranked
trees in the streaming setting and we introduce a suitable notion of transducer
that captures streaming edit strategies on serialized trees.

2. We give a game theoretic characterization of streaming bounded repairability
for languages of unranked trees defined by ‘top-down deterministic schemas’
(e.g. XSDs).

3. Using the characterization above, we derive decidability and tight complex-
ity results for the streaming bounded repairability problem and a number of
variants of it.

Organization. Section 2 gives basic definitions, including the notions of schema
and repair considered in the paper. Section 3 formalizes the streaming bounded
repairability problem and states the main characterization theorem. Section 4
gives a detailed proof of the ”if direction” of the characterization theorem, which
derives a steaming repair processor form a given winning strategy of Repairer.
Section 5 gives a detailed proof of the converse direction of the characterization
theorem, namely, it shows that from a streaming repair processor of uniformly
bounded cost one can extract a winning strategy for Repairer. Section 6 considers
the consequences of the characterization theorem for complexity, while Section 7
gives conclusions and discusses future work.

2 Preliminaries

In this paper we work with finite unranked ordered trees and forests (hereafter simply
called trees and forests) whose nodes are labeled over a fixed finite alphabet.
Formally, a forest is a function t mapping non-empty sequences of positive natural
numbers to symbols from a finite alphabet, e.g. Σ. The domain of this function t

is denoted nodes(t) and satisfies the following closure under lexicographic order:
for all ı⃗ ∈ N∗ and all j, k ∈ N, with k ≤ j, if ı⃗ ⋅ j ∈ nodes(t), then ı⃗ ⋅ k ∈ nodes(t) and
either ı⃗ = ε or ı⃗ ∈ nodes(t). The roots of the forest t are represented by singleton
sequences; in particular, the empty sequence ε does not belong to the domain of
a forest. Trees are forests with a single root. Given a tree or forest t and a node

4 Pierre Bourhis et al.

ı⃗ ∈ nodes(t), we say that t(⃗ı) is the label of node ı⃗ in t. We often describe trees and
forests by means of pictures or unranked terms such as a(b, b, b) ⋅ c.

2.1 Languages of trees and forests

We will consider a sub-class of regular tree languages that contains the languages
defined by the structural components of XML Document Type Definitions (DTDs)
and XSD schemas [17,16]. This family of languages will be formally defined using
a suitable model of tree automaton. However, because many example languages
can be conveniently described in terms of DTDs, we begin with a short overview
of DTDs.

An XML Document Type Definition (DTD) is a tuple D = (Σ,S,L), where Σ is
a finite alphabet, S ⊆ Σ is the set of initial symbols, and L is a function that maps
symbols in Σ to regular expressions over Σ [10]. A tree t satisfies the DTD D if
the root of t is labeled with an initial symbol of D, i.e. t(1) ∈ S, and every node
ı⃗ ∈ nodes(t) satisfies t(⃗ı ⋅ 1) . . . t(⃗ı ⋅ n) ∈ L(t(⃗ı)), where n is the number of children of
ı⃗. We denote by L (D) the language of trees satisfying the DTD D. In accordance
with the XML standards, DTDs are often assumed to be deterministic, that is, to
use only rules with one-unambiguous regular expressions [9] and a singleton set of
initial symbols. We will often omit the alphabet and the set of initial symbols from
the definition of a DTD, since these can be easily understood from the context
(e.g. the initial symbol is usually the first to be listed in the expansion rules).

Example 1 Consider the DTD D defined by the following rules:

D ∶ r → a d

a → a + ε

d → b c∗

b → a

c → ε

t ∶ r

a

a

a

d

b

a

a

c c c

The right-hand side describes an example tree t that satisfies the DTD D.

In Section 6 we will establish some lower bounds to the complexity of the
streaming bounded repair problem in the presence of languages defined by DTDs.
In doing so we will consider some special forms of DTDs that have been extensively
studied in the literature [19,16]. For example, we will consider DTDs that are non-

recursive, namely, DTDs D = (Σ,S,L) whose dependency graph – i.e. the graph
that connects a letter a to a letter b whenever b occurs in the language L(a) – is
acyclic.

We now describe an automaton model that generalizes DTDs [15,11]. This
model can be seen as a typing system in which the type associated with each
internal node of a tree depends uniquely on the type of the parent and the type
of the left sibling (if this exists), or, equivalently, as a top-down deterministic
binary tree automaton that runs on the standard first-child-next-sibling encoding
of the input tree. Formally, a top-down deterministic tree automaton is a tuple A =
(Σ,Q, δ, q0, F), where:

– Σ is a finite alphabet,

Which XML schemas are streaming bounded repairable? 5

– Q is a finite set of states,
– δ ∶ Q ×Σ ⇀ Q ×Q is a partial transition function,
– q0 ∈ Q is an initial state, and
– F ⊆ Q is a set of final states.

To avoid switching every time between unranked trees and their first-child-next-
sibling encodings, we define the runs of top-down deterministic automata directly
on unranked trees and unranked forests. Given a tree or forest t, we denote by
nodes+(t) the extended domain of t, which contains all nodes of t and all sequences
ı⃗ ⋅ j ⋅ 1 and ı⃗ ⋅ (j + 1) ∈ nodes+(t), with ı⃗ ⋅ j ∈ nodes(t). Intuitively, nodes+(t) is the
extension of the domain of t that results from adding a new child to each leaf and
a new sibling to each node with no right sibling. A run of A on t is a function
ρ ∶ nodes+(t)→ Q such that, for all ı⃗ ⋅ j ∈ nodes(t),

δ(ρ(⃗ı ⋅ j), t(⃗ı ⋅ j)) = (ρ(⃗ı ⋅ j ⋅ 1), ρ(⃗ı ⋅ (j + 1))).

A run ρ is accepting if ρ(1) = q0 and ρ(⃗ı) ∈ F for all nodes ı⃗ ∈ nodes+(t) ∖ nodes(t).
The language recognized by A is the set L (A) of all trees/forests t ∈ TΣ that
induce an accepting run of A.

Example 2 We introduce here our running example. Consider the two DTDs below:

D ∶ r → a d D′ ∶ r → e c∗

a → a + ε e → a + a a

d → b c∗ a → a + ε

b → a + ε c → ε

c → ε

We can equivalently describe the languages defined by DTDs using top-down de-
terministic tree automata. In the specific case that we consider, the automata
equivalent to the above DTDs have a particular form that allow at most one let-
ter to be parsed from each control state (we remark that this is not the case in
general). For instance, the following are the transitions rules of two top-down de-
terministic tree automata R and T that recognize the languages L (R) = L (D)
and L (T) = L (D′), respectively (for convenience, we annotate each state with
the unique letter that can be parsed from it, we underline the final states, and we
tacitly assume that the initial states are pr0 and qr0):

R ∶ pr0
rÐÐ→ pa0 f

pa0
aÐÐ→ pa1 p

d
0

pa1
aÐÐ→ pa1 f

pd0
dÐÐ→ pb0 f

pb0
bÐÐ→ pa1 p

c
0

pc0
cÐÐ→ f pc0

T ∶ qr0
rÐÐ→ qe0 f

qe0
eÐÐ→ qa0 qc0

qa0
aÐÐ→ qa1 qa1

qa1
aÐÐ→ qa1 f

qc0
cÐÐ→ f qc0

Below are examples of a tree t satisfying the DTD D and the induced accepting
run ρ of R (states of the run are colored in black or gray depending on whether
they label nodes of t or nodes in nodes+(t) ∖ nodes(t)):

6 Pierre Bourhis et al.

t ∶ r

a

a

a

d

b

a

a

c c c

ρ ∶ pr0

pa0

pa1

pa1

pa1

f

f

pd0

pb0

pa1

pa1

pa1

f

f

pc0

f

pc0

f

pc0

f

pc0

f

f

In the sequel, we will tacitly assume that automata are trimmed, namely, that
all states of automata appear in some accepting run. Because useless states of
automata can be detected and removed in linear time [10], this assumption will
have no impact on our complexity results.

It is known that top-down deterministic tree automata define a proper subset
of the class of regular tree languages [16,15]. We consider this sub-class of regular
tree languages because our characterization of streaming bounded repairability is
correct only for tree languages specified by means of top-down deterministic tree
automata (we refer the reader to Section 3 for further explanations and examples).
Despite of the lack of expressiveness, top-down deterministic tree automata are at
least as expressive as DTDs and XML Schemas [16], which are commonly used in
practice.

2.2 Contexts

As we mentioned in the introduction, part of our solution to the bounded re-
pairability problem in the streaming setting is adapted from a previous work [18].
In particular, we will make extensive use of the notion of context [10], i.e. a tree
or a forest with a distinguished hole that acts as a placeholder for substitution.
The context hole will be identified by means of a special symbol ●, not in the un-
derlying alphabet Σ. The general idea is to use contexts to represent pieces of an
input tree that can be easily composed, in analogy with concatenation of words.

Formally, a context over Σ is a tree or a forest labeled over Σ ⊎ {●}, with
the symbol ● occurring exactly once in a leaf that has no right sibling. Examples
of contexts are a(b, b, ●) and a(b, b) ●; on the other hand, a(b, ●, b) is not a valid
context in our setting. Given a context C and a tree t, we denote by C ○ t the
tree obtained from the substitution of ● in C by t. The composition C ○C′ of two
contexts is defined similarly and results again in a context.

The rationale behind allowing the hole symbol ● to occur only at leaves with
no right sibling lies in the possibility of extending the transition function of an
automaton from single letters to contexts. More precisely, we derive from the
transition function δ of a top-down deterministic tree automaton A a partial tran-
sition function δ○ on contexts, as follows. Given a state q and a context C, we let
δ○(q,C) = q′ if and only if the context C is accepted by the automaton A where
the initial state is replaced by q and the transition function δ is extended in such a
way that δ(q′, ●) = (f, f), with f being a new final state. Note that this definition
makes only sense when the hole of C occurs at a leaf with no right sibling.

Which XML schemas are streaming bounded repairable? 7

r

a a

b xxx

c c

b

delete

r

a a

b c c b

insert

r

a a

b yyy

c c

b

Fig. 1 Edit operations on unranked trees.

2.3 Serializations

It is known that trees, and more generally forests, can be represented by their
serializations (XML Documents). Formally, for a given finite alphabet Σ, we in-
troduce a disjoint copy Σ̄ = {ā ∣ a ∈ Σ}. The elements in Σ represent the opening

tags of the serializations, while the elements in Σ̄ represent the closing tags. The
serialization t̂ of a tree t is defined inductively by letting t̂ = aā if t is the singleton
tree a, and t̂ = a ⋅ t̂1 ⋅ . . . ⋅ t̂n ⋅ ā if t = a(t1, . . . , tn). The serialization of a forest is the
concatenation of the serializations of its trees. Clearly, every serialization of a tree
or forest produces a well-matched string over Σ ⊎ Σ̄ and vice-versa. For example,
the serialization of the tree t of Example 2 is:

t̂ = r a a a ā ā ā d b a a ā ā b̄ c c̄ c c̄ c c̄ d̄ r̄.

According to the above definition, the serialization Ĉ of a context C is a word
that contains a single occurrence of the substring ● ●̄. We denote by Ĉprefix (resp.
Ĉsuffix) the prefix (resp. suffix) of Ĉ that ends immediately before the occurrence
of ● (resp. that starts immediately after the occurrence of ●̄). Observe also that
the composition of contexts with trees/contexts has analogous operations on seri-
alizations, that is,

Ĉ ○ t = Ĉ
prefix ⋅ t̂ ⋅ Ĉsuffix and Ĉ ○C′ = Ĉ

prefix ⋅ Ĉ′ ⋅ Ĉsuffix
.

2.4 Edit operations on trees and serializations

The central notion of this paper is that of tree repair, that is a sequence of edit
operations on unranked trees. We first recall the definition of the edit operations
on unranked trees that are used to derive the standard notion of edit-distance [20,
7,18]. Next, we discuss what should be the analogous operations on tree serializa-
tions, which will be used to implement our repair strategies.

The first edit operation is that of deletion, which consists of removing a dis-
tinguished (non-root) node ı⃗ from an unranked tree t and promoting its subtrees
as children of its parent. The second operation is that of insertion, which consists
of adding a new element below a node ı⃗ of an unranked tree t, with a possible
adoption of a list of subsequent children of ı⃗. Figure 1 gives examples of deletion
and insertion operations (to ease readability, we highlighted in bold the deleted
and inserted nodes). Sometimes a third edit operation is used, which consists of
modifying the label of a distinguished node in a tree; this operation is subsumed
by insertion and deletion of nodes and for this reason it will be not considered
here as basic edit operation.

8 Pierre Bourhis et al.

In order to characterize bounded repairability of tree languages in the stream-
ing setting, we need to reason on analogous editing operations on serializations. A
natural idea is to consider the notion of alignment. Given two strings u ∈ Σ∗ and
v ∈ ∆∗, an alignment of u and v is any string e over the alphabet (Σ⊎{ε})×(∆⊎{ε})
whose projection over the first (resp. second) component gives u (resp. v). The cost

of an alignment e, denoted ∣∣e∣∣, is the number of occurrences in e that are not of
the form (a, a) with a ∈ Σ, nor of the form (ε, ε). It is known that the minimum
cost of all possible alignments between pairs of strings captures the notion of string
edit distance [21]. As an example, the string (aa)(bε)(cc)(dd)(

ε
a) is an alignment

between u = abcd and v = acda that achieves optimal cost 2.
As we mentioned earlier, we are interested in repairing serializations of un-

ranked trees and, more specifically, in alignments that can be directly translated
into editing operations on the corresponding trees having similar costs. For this
we need to enforce suitable restriction to the alignments of the tree serializations.
This is captured by the notion of tree edit alignment. Let us consider two serializa-
tions u ∈ (Σ ⊎ Σ̄)∗ and v ∈ (∆ ⊎ ∆̄)∗ and an alignment e between them. First, in
a way similar to the framework of nested words described in [2], we capture the
nesting structure of the words u, v underlying the alignment e by means of two
relations ∼u and ∼v defined over the positions of e. Formally, given two positions
i,, with 1 ≤ i < j ≤ ∣e∣, we write i ∼u j (resp. i ∼v j) if and only if the infix e[i, j]
projected onto the first (resp. second) components is a valid serialization of some
tree (i.e. a well-matched word). We then say that e is a tree edit alignment if the
following implications hold:

– if e(i) = (a, a) for some 1 ≤ i ≤ ∣e∣, then there is 1 ≤ j ≤ ∣e∣ such that e(j) = (ā, ā),
i ∼u j, and i ∼v j,

– if e(j) = (ā, ā) for some 1 ≤ j ≤ ∣e∣, then there is 1 ≤ i ≤ ∣e∣ such that e(i) = (a, a),
i ∼u j, and i ∼v j.

Example 3 Let t = a(a(b), c) and t′ = a(a(c), b) and let t̂ = aabb̄ācc̄ā and t̂′ = aacc̄ābb̄ā
be the corresponding serializations. The following are two possible alignments
between t̂ and t̂′:

e = (aa)(aa)(bc)(b̄c̄)(āā)(
c
b)(c̄b̄)(āā)

e′ = (aa)(aa)(εc)(εc̄)(εā)(bb)(b̄b̄)(
ā
ā)(cε)(c̄ε)(āε).

However, only the first alignment e is a tree edit alignment, which corresponds
precisely to the editing strategy that swaps the labels b and c of a tree. The
second alignment is not a tree edit alignment, since when we consider the position
i = 2, we observe that e′(i) = (a, a) and j = 8 is the unique position such that
e(j) = (ā, ā), but i ≁v j.

It is not difficult to see that, given two trees t and t′, there is a sequence of
tree edit operations of length N that turns t into t′ if and only if there is a tree
edit alignment of cost 2N between the serializations t̂ and t̂′. Interestingly, the
following example inspired from [1] shows that the notion of alignment between
serializations needs to be restricted in order to correctly capture the costs of edit
operations on trees, even up to multiplicative constants. Indeed, there exist families
of trees on which the costs of alignments are uniformly bounded, while the costs
of tree edit operations get arbitrary high.

Which XML schemas are streaming bounded repairable? 9

Example 4 Consider pairs of trees of the same height and with the following shapes
(bold labels highlight the differences between left-hand and right-hand sides):

r

a r

b

r

a r

b r b

a

b

a

r

a r

b

r

a r

b r aaa

bbb

aaa

bbb

No matter how one chooses to transform the left-hand side tree into the right-hand
side one using tree edit operations, the repair cost grows at least linearly with the
height of the trees. Indeed, it is easy to see that every tree edit operation preserves
the order of (non-deleted) nodes induced by the pre-order visit of the tree. In
particular, this means that at least one node from each triple of siblings (a, r, a),
(b, r, b), . . . in the left-hand side tree must be deleted in order to obtain the right-
hand side tree. On the other hand, there exist alignments between the serializations
of trees of the above forms having uniformly bounded cost, for example:

e = (rr)(aa)(āā)(rr)(bb)(b̄b̄) . . . (
r
r)(aa)(āā)(rr)(bb)(b̄b̄)(

r
r)

(r̄̄r̄rεεε)(bbbεεε)(b̄̄b̄bεεε)(r̄r̄)(
a
a)(āā)(r̄r̄) . . . (bb)(b̄b̄)(

r̄
r̄)(aa)(āā)(r̄r̄)(εεεbbb)(

εεε
b̄̄b̄b)(εεεr̄̄r̄r).

It is important to note that the above alignment e is not a tree edit alignment.
Indeed, if we consider the position i = 1 in e, where the symbol (rr) occurs, then

for every position j of an occurrence of (r̄r̄), we have that i ≁v j, where v is the
projection of e onto the second component.

2.5 Transducers

A streaming repair process is a machine that consumes strings from a restriction
language and produces strings in a target language. We formalize this by means of
the notion of transducer. A (sequential) transducer is a tuple Z = (Σ,∆,Z, κ, z0,Ω),
where

– Σ is a finite alphabet for the input strings,
– ∆ is a finite alphabet for the repaired strings,
– Z is a (possibly infinite) set of states,
– κ is a partial transition function from Z × (Σ ⊎ {ε}) to ∆∗ × Z,
– z0 ∈ Z is an initial state,
– Ω is a final output function from Z to ∆∗.

A run of Z consists of a sequence of transitions of the form

z0
u1/v1ÐÐ→ z1

u2/v2ÐÐ→ . . .
un/vnÐÐ→ zn

ε/vn+1ÐÐ→

where ui ∈ Σ ⊎ {ε}, vi ∈ ∆∗, vn+1 = Ω(zn), and κ(zi−1, ui) = (vi, zi) for all 1 ≤ i ≤ n.
Given the above run, we say that v = v1 ⋅ v2 ⋅ . . . ⋅ vn ⋅ vn+1 is the output of Z on
input u = u1 ⋅ u2 ⋅ . . . ⋅ un. In order to guarantee that Z produces at most one
output on each input, we forbid the possibility that both δ(z, ε) and δ(z, a), for

10 Pierre Bourhis et al.

some a ∈ Σ, are defined on the same state z. Observe that the above definition
allows for transducers with an infinite number of states: this is needed because
our transducers will be used to implement streaming repair strategies between
serializations of XML schemas, which, like validation, requires unbounded memory.

The above definition of run of a transducer implicitly defines an alignment
between the input and the output, that is, a particular way of synchronizing the
characters in the input and output strings. More precisely, we first show how to
‘disambiguate’ the edits induced by the run of a transducer, determining whether
a given transition u/v is to be considered as a deletion, an insertion, or a deletion
followed by an insertion. Formally, the induced alignment of a run ρ of Z such as
the one described above is the sequence

align(ρ) =def
align(u1

v1) ⋅ align(
u2
v2) ⋅ . . . ⋅ align(

un
vn) ⋅ align(ε

vn+1)

where

align(uv) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(aε)(ε
b1) . . . (

ε
bk) if u = a, v = b1 . . . bk, and a ≠ bi for all 1 ≤ i ≤ k

(ε
b1) . . . (

a
bi) . . . (

ε
bk) if u = a, v = b1 . . . bk, and i = minj≤k{j ∣ a = bj}

(ε
b1) . . . (

ε
bk) if u = ε and v = b1 . . . bk.

We define the aggregate cost of a transducer Z on input u, denoted cost(u,Z), as
the cost of the induced alignment of its run on u.

In general, alignments induced by runs of transducers can be of any form.
Hereafter, however, we restrict ourselves to transducers that only work on serial-
izations of trees and whose induced alignments are tree edit alignments. We call
these transducers tree edit transducers.

3 Bounded repairability in the streaming setting

We describe here the streaming bounded repair problem for languages of unranked
trees. The setting is given by two languages R and T of unranked trees, called
restriction and target languages. Trees in R (resp. T) are labeled over a finite
alphabet Σ (resp. ∆), and they are encoded by their serializations. We assume
that the languages R and T are presented by means of top-down deterministic
tree automata. The goal is to decide whether it is possible to repair any tree t ∈ R
into a tree t′ ∈ T , using a number of edits that is uniformly bounded by a constant
(i.e. independent of t). We are particularly interested in repair strategies that are
streaming, that is, that can be applied to serializations of trees and that can be
produced in an online way by means of a tree edit transducer.

Formally, let stream(R,T) be the class of all tree edit transducers Z such that
Z(t̂) ∈ T for all t ∈ R. For a tree edit transducer Z ∈ stream(R,T), we define the
worst-case aggregate cost of Z as

costZ(R,T) =def sup
t∈R

cost(t̂,Z).

Finally, we define the streaming worst-case aggregate cost for two languages R,T as
the minimum of costZ(R,T) taken over all tree edit transducers Z ∈ stream(R,T):

coststream(R,T) =def min
Z ∈ stream(R,T)

costZ(R,T).

Which XML schemas are streaming bounded repairable? 11

r

a

a

ddd

b

a

a

c c c
delete

r

a

a

bbb

a

a

c c c

delete

r

a

a

a

a

c c c

insert

r

eee

a

a

a

a

c c c

Fig. 2 Example of repair of a tree satisfying DTD D into a tree satisfying DTD D′.

The streaming bounded repair problem consists of deciding, given two regular tree
languages R,T whether coststream(R,T) <∞.

The following examples show that it is not at all obvious whether a given
schema is bounded repairable into another. The last example shows the difference
between non-streaming edit strategies and streaming ones.

Example 2 (continued) Consider the languages R and T defined by the DTDs D and
D′ of our running example. It is possible to transform every tree t ∈ R into a tree
t′ ∈ T using just 3 edit operations: one first deletes the d-labeled child of the root
and the b-labeled child of it, and then inserts a new e-labeled node as the first child
of the root, adopting the two chains of a-labeled nodes as sub-trees (see Figure 2).
This repair strategy can be easily implemented at the level of serializations by a
transducer that first copies the opening tag r from the input, then produces an
opening tag e and copies the portion a . . . a ā . . . ā of the input; subsequently, it
erases the incoming string d b, copies the next portion a . . . a ā . . . ā of the input,
replaces the next incoming symbol b̄ with ē, copies the string c c̄ . . . c c̄, and finally
erases the closing tag d̄ and copies the last symbol r̄ of the stream. Accordingly,
we say that R is streaming bounded repairable into T .

Example 5 Consider the language R of all trees of the form r(x, c, . . . , c, y, . . . , y),
with x, y ∈ {a, b}, and the language T of all trees of the form r(x, c, . . . , c, x, . . . , x),
with x ∈ {a, b}. A simple way to repair any tree of R into a tree of T is to replace the
label x of the first child with the label y occurring at the rightmost sibling. This
strategy has uniformly bounded cost, but cannot be implemented by a tree edit
transducer of similar cost. Indeed, every transducer of bounded cost that parses
a serialization of a tree of R has to commit to either preserving or modifying the
label x of the first child before seeing the right siblings labeled with y. Thus, the
language R is not streaming bounded repairable into T .

The rest of this section is devoted to present an effective characterization
of bounded repairability in the streaming setting for pairs of languages recog-
nized by top-down deterministic tree automata (this includes languages definable
by DTDs). The characterization combines ideas from previous results related to
streaming repairability of regular word languages [5,6] and to non-streaming re-
pairability of regular tree languages [18]. For instance, in [6] streaming bounded
repairability was characterized in terms of a simulation game over the directed
acyclic graphs of strongly connected components – similar concepts are used in
our main characterization. On the other hand, in [18] special conditions related to
the behavior of tree automata along the vertical (i.e. first-child) axis were taken
into account – here we do something similar in the presence of contexts with a

12 Pierre Bourhis et al.

GR ∶ pr0 f

pa0 pd0

pa1 pb0 pc0

GT ∶ qr0 f

qe0 qc0

qa0 qa1

Fig. 3 Transition graphs of two deterministic top-down tree automata, where horizontal and
vertical edges are represented by dotted and solid arrows, respectively.

vertical axis. To describe formally our characterization we need to first introduce
some definitions and notations.

3.1 Components of automata

The transition structure of a top-down deterministic tree automaton A =
(Σ,Q, δ, q0, F) can be conveniently represented in terms of the graph GA =
(Q,Eh ⊎ Ev), where the nodes are the control states of A and the edge relations
Ev, Eh are defined by

Ev =def {(q, q1) ∈ Q ×Q ∣ ∃q2 ∈ Q. ∃a ∈ Σ. δ(q, a) = (q1, q2)}

Eh =def {(q, q2) ∈ Q ×Q ∣ ∃q1 ∈ Q. ∃a ∈ Σ. δ(q, a) = (q1, q2)}.

Intuitively, the edges in Ev, called vertical edges, represent the transitions of A
from a given node of a tree to its first child. The edges in Eh, called horizontal

edges, represent the transitions of A from a given node to its next sibling. Figure 3
depicts the transition graphs for the automata R and T of Example 2 (dotted
arrows represent horizontal edges, solid arrows represent vertical edges).

From the graph representation of an automaton A we derive the notion of
strongly connected component of A: this is a maximal set X of nodes of GA such
that for all q, q′ ∈ X, there is a directed path from q to q′ visiting only nodes in X

and traversing edges in Ev ∪Eh. Observe that for all states q, q′ ∈ X, there exists a
context C such that δ○(q,C) = q′. In fact, we can associate with each component
X of the automaton A = (Σ,Q, δ, q0, F) the language of contexts realizable in X:

L (A ∣ X) =def {C ∈ CΣ ∣ ∃ q, q′ ∈ X. δ○(q,C) = q′}.

Intuitively, the contexts in the languages of the form L (A ∣ X) represent ‘pieces’
of arbitrary large size that form the trees that can be possibly given in input to
a streaming repair processor. Because these pieces can be repeated many times,
it is better not to repair any of them in order to get into the target language, as
doing otherwise would easily incur an unbounded repair cost.

Next, we denote by SCC(A) the set of all components of an automaton A and
we distinguish between two types of components in SCC(A):
– horizontal components X, where all edges are horizontal, namely, where (q, q′) /∈

Ev for all q, q′ ∈ X,

Which XML schemas are streaming bounded repairable? 13

– non-horizontal components X, which contain at least one vertical edge, namely,
where (q, q′) ∈ Ev for some q, q′ ∈ X.

It is easy to see that a component X of A is horizontal if and only if the holes of all
contexts of the language L (A ∣ X) occur at the top level, precisely at the rightmost
roots. Such contexts are called horizontal and intuitively represent forests, that is,
sequences of sub-trees. Symmetrically, contexts with holes occurring at non-root
nodes are called vertical.

As an example, the left-hand side graph of Figure 3 contains only two compo-
nents with non-trivial languages of contexts, that is, one horizontal component at
state pc0 realizing contexts of the form c ⋅ . . . ⋅c ⋅●, and one non-horizontal component
at state pa1 realizing contexts of the form a(a(. . . a(●) . . .)). The components of the
right-hand side graph are similar, but arranged in a different layout.

3.2 Prefix-rewriting systems

To understand our characterization result, it is useful to think of a top-down
deterministic tree automaton as a device that processes serializations of trees in
a single-threaded left-to-right fashion, rather than a device that processes the
branches of a tree in parallel. For this, we need to reason on states that are reached
after parsing prefixes of tree serializations.

Formally, given a top-down deterministic tree automaton A = (Σ,Q, δ, q0, F)
and a prefix u of the serialization of a tree, we define the state reached by A on u

as the unique state of the form δ○(q0, C), for some context C such that Ĉprefix = u
(note that this is well-defined because Ĉprefix

1 = Ĉprefix
2 implies δ○(q0, C1) = δ○(q0, C2)

for any two contexts C1, C2).

Being able to perform a bounded repair from a restriction automaton R to a
target automaton T , one needs to respond to prefixes u of serializations of trees in
L (R) by prefixes v of serializations of trees in L (T) in such a way that, at any
point, if we take the component of the state reached by R on u, the language of
contexts realized in this component is contained in the language of contexts realized
in the component of the state reached by T on v. In this way, if the prefix u is
repeatedly extended in a cyclic way – without leaving the component of the state
reached on u – the repair processor can respond by just copying the input symbols,
incurring no cost. Of course, it is not feasible to look at all possible prefixes u of
serializations of trees in R. For this reason, our characterization of streaming
bounded repairability is based on a sort of simulation game in which abstractions

of runs of R are produced by one player, and are countered by abstractions of runs
of T produced by the other player.

The abstractions are stacks of components, representing the states at the fron-
tier of the portion of the tree that is represented by the prefix of the serialization.
For example, extending a prefix u of a serialization with a new opening tag a in-
duces a transition of R from the reached state p to two new states p1 and p2 (one
associated with the new a-labeled child, the other associated with a forthcoming
right sibling). This transition is abstracted at the level of components by a corre-
sponding push-and-swap move that replaces the component of p at the top of the
restriction stack with the components of p1 and p2. A key observation is that it is
not necessary to mimic all transitions of the restriction automaton, but only those

14 Pierre Bourhis et al.

that exit the current component and reach new components with both successor
states. This will keep the length of the plays in the simulation game bounded,
allowing us to determine the winner effectively.

Formally, we capture the dynamics of stacks of components via prefix-rewriting
systems associated with the restriction and target automata R and T . These
systems act on stacks of components of R and T and they are naturally obtained
from the ‘lifting’ of the transition rules to the strongly connected components.
Stacks of components are presented as strings under the usual convention that the
top element of a stack is listed first. Given a stack z⃗, we denote by top(z⃗) its top
element and by tail(z⃗) the sub-stack below this element. We will use x⃗, x⃗′, x⃗′′ (resp.
y⃗, y⃗′, y⃗′′) to denote stacks of components of R (resp. T).

We start with the definition of the prefix-rewriting system associated with the

restriction automaton R = (Σ,P, δ, p0, F). This is the relation R↦ ⊆ SCC(R)∗ ×
SCC(R)∗ between stacks of components of R defined by

X ⋅ x⃗ R↦ X1X2 ⋅ x⃗ if and only if X1 ≠ X ∧ X2 ≠ X ∧
∃ p ∈ X, p1 ∈ X1, p2 ∈ X2, a ∈ Σ.
δ(p, a) = (p1, p2)

X ⋅ x⃗ R↦ x⃗ always

where X,X1,X2 denote single components of R. Note that x⃗ R↦ x⃗′ implies either
∣x⃗∣ = ∣x⃗′∣+ 1 or ∣x⃗∣+ 1 = ∣x⃗′∣. Moreover, due to the condition X1 ≠ X ∧X2 ≠ X in the
above definition, the component X at the top of the stack cannot be rewritten into
a copy of it. Together with the fact that the accessibility graph of the components

of R is acyclic, this implies that all sequences of rewriting steps according to R↦
have finite bounded length.

The prefix-rewriting system for the target automaton T = (∆,Q, γ, q0,G) is
defined in a similar way, with only two differences. First, we allow components
of T to be rewritten into themselves (for instance, we allow rules of the form

Y T↦ Y Y whenever γ(q, a) = (q1, q2) for some states q, q1, q2 ∈ Y). This difference is
required essentially because several components of R could be covered by the same
component of T (see Section 3.3). Second, we allow rewriting rules that simulate
the execution of several transitions of T at once: this is done by taking the reflexive

and transitive closure of a basic rewriting relation T↦ , which is defined just below.
This corresponds to the fact that in the target we can make multiple repairs (e.g.
insert multiple symbols) in response to a single input symbol of the restriction.

We associate with the target automaton T = (∆,Q, γ, q0,G) the relation T↦
⊆ SCC(T)∗ × SCC(T)∗ defined by

Y ⋅ y⃗ T↦ Y1 Y2 ⋅ y⃗ if and only if ∃ q ∈ Y, q1 ∈ Y1, q2 ∈ Y2, a ∈ ∆.
γ(q, a) = (q1, q2)

Y ⋅ y⃗ T↦ y⃗ if and only if y⃗ ≠ ε.

We denote by T↦∗ the reflexive and transitive closure of the relation T↦ .

Which XML schemas are streaming bounded repairable? 15

Example 2 (continued) Consider the automata R and T of our running example
(see also Figure 3 for a quick reference of their transitions). The following are two

valid derivations of the prefix-rewriting systems R↦ and T↦∗ :

{pr0} R↦ {pa0}{f} R↦ {pa1}{pd0}{f} R↦ {pd0}{f}

{qr0} T↦∗ {qa0}{qc0}{f} T↦∗ {qa1}{qa1}{qc0}{f} T↦∗ {f}.

3.3 The simulation game

We have now all the ingredients to characterize streaming bounded repairability
for two languages L (R) and L (T) in terms of a suitable simulation game between

the prefix-rewriting systems R↦ and T↦∗ associated with R and T .
To explain the general idea we first consider the simpler case where all compo-

nents of the restriction automaton R are horizontal. In this case, the simulation
game takes place between two players, called Generator and Repairer, who control

two stacks x⃗ ∈ SCC(R)∗ and y⃗ ∈ SCC(T)∗ using the prefix-rewriting relations R↦
and T↦∗ , respectively. The game starts with the initial singleton stacks X0 and
Y0, where X0 is the component of the initial state of R and Y0 is the component
of the initial state of T . Repairer moves first by applying to his stack Y0 a se-

quence of prefix-rewriting rules satisfying T↦∗ (this corresponds to the fact that
the repair processor is allowed to insert some initial prefix of the output, prior
to any input being received). Generator responds by applying to his stack X0 a

single prefix-rewriting rule satisfying R↦ . Then the game continues in a similar
way from the new pair of stacks. Some invariants have to be enforced however.
Every time Repairer moves, he has to apply appropriate prefix-rewriting rules to
reach a stack y⃗ such that the language L (T ∣ top(y⃗)) of contexts realizable in the
top component of y⃗ contains the language L (R ∣ top(x⃗)) of contexts realizable in
the top component of the stack x⃗ controlled by Generator, that is,

L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗)).

We will see later, in Section 4 and 5, how this containment property between
languages of contexts eases the repair process. Eventually, one of the two players
will not be able to move, in which case the other player wins.

In order to correctly characterize streaming bounded repairability in the pres-
ence of non-horizontal components of R, we need to consider an extension of the
simulation game where a special separator symbol ⊲ is prepended to the non-
horizontal components of the stacks. For the sake of presentation, it is convenient
to describe the extension of the simulation game by introducing a third player,
called Referee, who handles the occurrences of the separator symbol ⊲ in the two
stacks. The game goes as before by alternating between moves of Repairer and
moves of Generator. However, if after a move of Repairer the element at the top
of the stack of Generator is a non-horizontal component, then Referee comes into
play: he inserts the separator symbol ⊲ just below the top components of the stacks
of Generator and Repairer and he passes the turn to Generator. From there after,
neither Generator nor Repairer are allowed to modify the parts of their stacks that
are hidden under a separator. If after a move of Generator the top element of his

16 Pierre Bourhis et al.

stack becomes ⊲, then Referee comes again into play: he removes ⊲ from the top of
the stack of Generator, he pops from the stack of Repairer the top-most separator
and all elements above it, and he finally passes the turn to Repairer. We remark
that in the above formulation of the game, Referee cannot choose his moves, as
these are always determined by the current configuration of the game. This makes
the game equivalent to a classical turn-based two-player reachability game, whose
winner is known to be determined.

A formal definition of the arena of the game follows. For the sake of readability,
we use a different notation (i.e. J x⃗ , y⃗ K, ⟪ x⃗ , y⃗⟫, and L x⃗ , y⃗ M) for the positions of the
arena that belong to Generator, Repairer, and Referee (respectively).

Definition 1 Let R and T be two top-down deterministic tree automata and let
x⃗, x⃗′, x⃗′′ (resp. y⃗, y⃗′, y⃗′′) denote generic sequences over SCC(R)⊎{⊲} (resp. SCC(T)⊎
{⊲}). The arena GR,T for the simulation game is defined as follows: the initial
position is the pair ⟪ x⃗0 , y⃗0⟫, which is owned by Repairer, where x⃗0 (resp. y⃗0) is
the singleton stack that consists of the component of the initial state of R (resp.
T); the possible moves for Generator are of the form:

– J x⃗ ⋅ x⃗′′ , y⃗ K Gen↦ ⟪ x⃗′ ⋅ x⃗′′ , y⃗⟫ if top(x⃗′ ⋅ x⃗′′) ≠ ⊲, and

– J x⃗ ⋅ x⃗′′ , y⃗ K Gen↦ L x⃗′ ⋅ x⃗′′ , y⃗ M otherwise,

where x⃗ R↦ x⃗′ is a single prefix-rewriting rule associated with R (in particular, ⊲
occurs neither in x⃗ nor in x⃗′); the possible moves for Repairer are of the form:

– ⟪ x⃗ , y⃗ ⋅ y⃗′′⟫ Rep↦ J x⃗ , y⃗′ ⋅ y⃗′′ K if top(x⃗) is horizontal, and

– ⟪ x⃗ , y⃗ ⋅ y⃗′′⟫ Rep↦ L x⃗ , y⃗′ ⋅ y⃗′′ M otherwise,

where y⃗ T↦∗ y⃗′ is a sequence of prefix-rewriting rules associated with T and L (R ∣
top(x⃗)) ⊆ L (T ∣ top(y⃗′ ⋅ y⃗′′)); finally the moves for Referee are of the form:

– L⊲ ⋅ x⃗ , y⃗ ⋅ ⊲ ⋅ y⃗′′ M Ref↦ ⟪ x⃗ , y⃗′′⟫ if y⃗ does not contain any occurrence of ⊲,

– LX ⋅ x⃗′′ , Y ⋅ y⃗′′ M Ref↦ JX ⋅ ⊲ ⋅ x⃗′′ , Y ⋅ ⊲ ⋅ y⃗′′ K if X is non-horizontal and top(x⃗′′) ≠ ⊲,

– LX ⋅ x⃗′′ , Y ⋅ y⃗′′ M Ref↦ JX ⋅ x⃗′′ , Y ⋅ y⃗′′ K otherwise.

We observe that all plays that could possibly arise from the simulation game
over the arena GR,T are finite: this is because each position of GR,T is visited at
most once during a play and the set of all reachable positions is finite, due to the
restriction on the moves of Generator. Indeed the stacks that could be derived
from the prefix-rewriting system R↦ have length at most ∣SCC(R)∣. This allows us
to define the winner of a play as the last player who moved (which must be either
Generator or Repairer).

Example 2 (continued) We continue our running example by describing a beginning
of a possible play over the arena GR,T (to save space and improve readability, we
write vertically the pairs of stacks encoding the positions of the arena):

⟪
{pr0}
{qr0}

⟫ Rep
↦

s
{pr0}
{qr0}

{
Gen
↦
⟪
{pa0}{f}
{qr0}

⟫ Rep
↦

s
{pa0}{f}
{qa0 }{q

c
0}{f}

{
Gen
↦
⟪
{pa1}{p

d
0}{f}

{qa0 }{q
c
0}{f}

⟫ Rep
↦
L{pa1}{pd0}{f}
{qa1 }{q

a
1 }{q

c
0}{f}

M
Ref
↦

s
{pa1}⊲{p

d
0}{f}

{qa1 }⊲{q
a
1 }{q

c
0}{f}

{
Gen
↦ L⊲{pd0}{f}
{qa1 }⊲{q

a
1 }{q

c
0}{f}

M Ref
↦

⟪
{pd0}{f}
{qa1 }{q

c
0}{f}

⟫ ⋯

The first move is due to Repairer, who leaves the stack unchanged. Then Generator
moves by replacing the top component {pr0} with the pair of components {pa0} {f}.

Which XML schemas are streaming bounded repairable? 17

r

a

a

b . . . b

r

a

a

b . . . b

Fig. 4 Examples of trees where player Referee is important.

Repairer responds with a sequence of two operations: a push-and-swap operation
that replaces {qr0} with {qe0} {f}, followed by a push-and-swap operation that
replaces {qe0} {f} with {qa0} {qc0} {f}. The play continues in a similar way as a
sequence of moves taken alternatively by Repairer and Generator, and possibly
interleaved by moves of Referee. It is not difficult to see that Repairer has a
strategy to win the simulation game over GR,T .

As we mentioned earlier, it is more difficult for Repairer to win the simulation
game when the stack he controls contains some separator symbols – in this case he
cannot apply the prefix-rewriting rules arbitrarily deep into his stack. The purpose
of the following example is to demonstrate that, without this limitation, Repairer
can win the simulation game even if the restriction language is not streaming
bounded repairable into the target language.

Example 6 Let R′ and T ′ be the restriction and target languages that contain
the trees depicted in Figure 4. These languages are recognized by two top-down
deterministic tree automata R′ and T ′, using the following transitions (the states
p0 and q0 are initial, all other states are final):

R′ ∶ p0
rÐÐ→ p1 f

p1
aÐÐ→ p1 f

p1
bÐÐ→ f p2

p2
bÐÐ→ f p2

T ′ ∶ q0
rÐÐ→ q1 f

q1
aÐÐ→ q2 q3

q2
aÐÐ→ q2 f

q3
bÐÐ→ f q3

Clearly, R′ is not bounded repairable into T ′. Accordingly, Repairer loses the
simulation game over GR′,T ′ in the presence of separator symbols: Generator has
a winning strategy that consists of first reaching the restriction stack {p1}⊲{f},
forcing Repairer to respond with a target stack of the form {q2}⊲ . . . {q3}{f},
and later rewriting his stack to {p2}⊲{f}, thus leading to a losing position for
Repairer (the component {p2} of R′ is not covered by any component of T ′ that
is reachable from {q2}).

On the other hand, Repairer can easily win the simulation game if the separa-
tors are omitted. Indeed, from any position of the arena of the form

⟪{p2}{f} , {q2} . . . {q3}{f}⟫,

Repairer could simply pop some components at the top of his stack and cover with
{q3} the component {p2} at the top of the restriction stack.

We are now ready to state our main characterization result:

18 Pierre Bourhis et al.

Theorem 1 Given two top-down deterministic tree automata R and T , there exists

a streaming repair strategy from L (R) to L (T) with uniformly bounded worst-case

aggregate cost if and only if Repairer has a strategy to win the simulation game over

GR,T .

The effectiveness of the above characterization is discussed in Section 6, to-
gether with tight complexity bounds for the streaming bounded repairability prob-
lem. In Section 4 and 5 we give the detailed proofs for the two directions of Theo-
rem 1. More precisely, in Section 4 we show that if Repairer has a strategy to win
the simulation game over GR,T , then we can derive from this strategy a tree edit
transducer that repairs with bounded cost all serializations of trees from L (R)
into L (T). In Section 5 we prove the converse direction, namely, that if there
exists a streaming repair strategy from L (R) into L (T) which incurs a bounded
cost then Repairer has a strategy to win the simulation game over GR,T .

4 From simulation games to repairs

This section is devoted to the proof of the if direction of Theorem 1. We fix two
top-down deterministic tree automata R = (Σ,P, δ, p0, F) and T = (∆,Q, γ, q0,G)
that recognize the restriction and target languages, respectively, and we assume
that Repairer wins the game over the arena GR,T . We will then prove that L (R)
is streaming bounded repairable into L (T).

Recall that the simulation game over GR,T is equivalent to a two-player reacha-
bility game: Referee cannot choose his moves, he cannot win nor lose, so one of the
other players must win by reaching a position in the arena where the opponent can-
not move. We also know that reachability games are positionally determined [13]:
this means that Repairer has a winning strategy that is defined only on the basis of
the positions of the arena. We describe the positional winning strategy of Repairer
by means of a function W that maps any position ⟪ x⃗ , y⃗⟫ in GR,T that is owned

by Repairer to a move of the form ⟪ x⃗ , y⃗⟫ Rep↦ J x⃗′ , y⃗′ K. The function W will be used
to derive a transducer Z that implements a repair processor from L (R) to L (T)
having uniformly bounded aggregate cost. In fact, it is convenient to construct Z
incrementally, namely, as a cascade composition of fairly simple transducers Z1,
Z2, Z3, and Z4. Below, we give a brief overview of each transducer.

Intuitively, the first transducer Z1 decomposes the input tree t ∈ L (R) into
a small (uniformly bounded) number of factors. Some factors will have arbitrary
large size: these will not be edited by the repair process and will be represented
by contexts that are entirely realizable within single components of the restric-
tion automaton R. The other factors will consist instead of single letters that
induce transitions entering different components of R: these factors will be edited
(deleted) by the global repair process. The decomposition of t will also induce a
corresponding factorization of the unique run of the restriction automaton on t.
All factors of t will be accordingly annotated with the initial states of the emerging
partial runs. The resulting decomposition annotated with states will be output by
the transducer Z1 in the form of a stream, namely, as a serialized XML tree.

The second transducer Z2 will use the serialized decomposition produced by
Z1 to construct a corresponding play for the simulation game over GR,T . The
moves of Generator will be derived from the changes of components in R that are

Which XML schemas are streaming bounded repairable? 19

induced by the single-letter factors of the decomposition (at the same time, the
rewriting process erases these single-letter factors). While constructing the moves
of Generator, we will guarantee the invariant that the state that annotates each
factor in the serialized decomposition belongs to the top component reached by
the most recent move of Generator. On the other hand, the moves of Repairer
will be obtained from his winning strategy W , as responses to Generator moves.
The output of the transducer Z2 will thus consist of the serialized decomposition,
devoid of the single-letter factors, and annotated with moves describing a valid
play inside the arena GR,T .

The goal of the third transducer Z3 is to choose corresponding partial runs for
the target automaton T on the remaining factors of the decomposition. We will see
how the existence of these partial runs follows from a technical lemma and from
the containment relations L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗)) that are enforced to all
positions J x⃗ , y⃗ K of the arena GR,T . Only the initial states of the chosen partial
runs will be annotated inside the input factors. In addition, the transducer Z3

will replace moves of Repairer with corresponding sequences of transitions in the
target automaton. Overall, the output of Z3 will be the serialization of a partial
decomposition tree for T .

Finally, a fourth transduction will insert additional factors of uniformly
bounded size to connect the various states in the decomposition produced by
the transducer Z3. The result can be seen as a complete decomposition of a tree t′

that is accepted by the target automaton T . The output of the fourth transducer
Z4 will be the projection onto the target alphabet of this complete decomposition,
namely, the serialization t̂′ of a tree t′ ∈ L (T).

We will describe each sub-transducer in a different subsection; in the last sub-
section we will show how they all work together.

4.1 Transducer Z1: decomposing the tree

As we explained in the overview of the section, the main goal of transducer Z1 is to
receive the serialization t̂ of a tree t ∈ L (R) and, on the basis of the reached states
on each prefix of t̂, derive a decomposition of t into a bounded number of contexts,
each one realizable within a component of R. Recall that a context is realizable
within a component X of R if it induces a run of R where every transition has
at least one successor state in the same component X. As Z1 needs to generate a
decomposition with a bounded number of contexts, it should never decompose a
context unless it is really necessary, that is, unless both successor states fall outside
the current component. Moreover, recall that the decomposition of t needs to be
constructed in a streaming way while reading the input serialization t̂ – we will
see later how the construction of such a decomposition relies on the assumption
that the restriction automaton R is top-down deterministic.

We begin by formalizing the concept of decomposition tree, which, as a matter
of fact, has some similarities with the notion of synopsis tree introduced in [18].
Here a decomposition is essentially a binary tree whose nodes are labeled over an
infinite ranked alphabet [Σ]. Labels in [Σ] are of three different types:

– unary labels [p ∶ C], where p is a state of R and C is a context over Σ,
– binary labels [p ∶ a], where p is a state of R and a is a letter in Σ,

20 Pierre Bourhis et al.

t ∶ r

a

aaa

aaa

d

b

aaa

aaa

ccc ccc ccc

τ ∶ [pr0 ∶ r]

[pa0 ∶ a]

[pa1 ∶ a(a(●))a(a(●))a(a(●))]

[pa1 ∶ ∅]

[pd0 ∶ d]

[pb0 ∶ b]

[pa1 ∶ a(a(●))a(a(●))a(a(●))]

[pa1 ∶ ∅]

[pc0 ∶ c c c ●c c c ●c c c ●]

[pc0 ∶ ∅]

[f ∶ ∅]

[f ∶ ∅]

Fig. 5 A tree and an R-decomposition of it.

– nullary labels [p ∶ ∅], where p is a state of R.

The idea is that the contexts and the letters over Σ that appear in a decomposition
can be arranged together in order to reconstruct the original tree t. The states
that appear at each node of a decomposition are used to keep track of the initial
states of the partial computations of R on the factors of t. A formal definition of
decomposition follows.

Definition 2 Let R = (Σ,P, δ, p0, F) be a restriction automaton. An R-

decomposition is a ranked tree σ labeled over [Σ] such that:

– the root is labeled with a unary, binary, or nullary symbol of the form [p0 ∶ α],
where p0 is the initial state of R and α is a context, a single letter in Σ, or ∅;

– for every node labeled with a unary symbol [p ∶ C], the state p1 = δ○(p,C) is
well defined and belongs to the same component as p; furthermore, the node
has a unique child which is labeled with a unary, binary, or nullary symbol of
the form [p1 ∶ α];

– for every node labeled with a binary symbol [p ∶ a], the pair of states (p1, p2) =
δ(p, a) is well defined and neither p1 nor p2 belong to the same component as
p; furthermore, the node has left and right children labeled respectively with
symbols of the form [p1 ∶ α1] and [p2 ∶ α2];

– every node labeled with a nullary symbol [p ∶ ∅] is a leaf and p is a final state.

We say that σ is an R-decomposition of a tree or forest t if and only if JσK = t,
where JσK is defined inductively as follows:

JσK =def

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if σ = [p ∶ ∅],

C ○ Jσ1K if σ = [p ∶ C] (σ1),

a(Jσ1K) ⋅ Jσ2K if σ = [p ∶ a] (σ1, σ2).

Example 2 (continued) In Figure 5 we depict a tree t that is accepted by the
restriction automaton R of our running example, together with a possible R-
decomposition σ of it. Intuitively, the decomposition σ is obtained from t by look-
ing at the accepting run of R on t and by extracting maximal contexts realizable

Which XML schemas are streaming bounded repairable? 21

within single components of R (these contexts are represented by bold terms in
the figure). Binary nodes are added to the decomposition when the transitions of
the run induce a change of component along both successor states.

The following lemma shows that every tree accepted by the restriction automa-
ton has a decomposition consisting of a small (bounded) number of nodes.

Lemma 1 For every tree t ∈ L (R), there exists an R-decomposition of t with at most

22⋅∣SCC(R)∣ nodes.

Proof. In order to enable a reasoning by structural induction, we need to treat trees
and forests in the same manner. For this, we generalize the notion of acceptance
by a top-down deterministic tree automaton in the natural way. We will allow a
change of the initial state of R during our induction. More precisely, we will prove
that for every tree or forest t accepted by R from some given initial state, there
exists an R-decomposition of t with at most 22⋅∣SCC(R)∣ nodes.

The base case of the inductive construction considers the empty forest t, which
is clearly accepted by R. In this case, the decomposition is straightforward, that
is, [p0 ∶ ∅], where p0 is the initial state of R.

For the inductive step, consider a non-empty tree or forest t that is accepted
by R and denote by ρ the corresponding accepting run. Note that the state at
the first root of ρ is the initial state p0 of R; we denote by X0 its component.
Consider any maximal path π from the leftmost root of ρ that visits only states
in the component X0 (different decompositions may result from different choices
of π, but all of them will satisfy the statement of the lemma). Let ı⃗ ⋅ j be the last
node along this path π. By construction, two cases are possible:

1. either ı⃗ ⋅ j ∈ nodes+(t) ∖ nodes(t), namely, the path π reaches a leaf of ρ,
2. or ı⃗ ⋅ j ∈ nodes(t) and neither state ρ(⃗ı ⋅ j ⋅1) nor state ρ(⃗ı ⋅ (j +1)) belong to X0.

In the first case, we obtain a context C by extending the domain of t with node
ı⃗ ⋅ j and by marking it with the hole symbol ●. In particular, the defined context
C satisfies C ○ ∅ = t, where ∅ denotes the empty forest, and p1 = δ○(p0, C) ∈ X0.
Accordingly, we define an R-decomposition of t as follows:

σ =def [p0 ∶ C] ([p1 ∶ ∅]).

In the second case, we let a be the label of the node ı⃗ ⋅ j in t and we derive
from t a context C by relabeling the node ı⃗ ⋅ j with ● and by removing all proper
descendants of ı⃗ ⋅ j and all subtrees issued from the right siblings of ı⃗ ⋅ j. We also
define a forest t1 by restricting t to the proper descendants of node ı⃗ ⋅ j; similarly,
we define a forest t2 by restricting t to the subtrees issued from the right siblings
of ı⃗ ⋅j. Clearly, we have C ○(a(t1) ⋅t2) = t and δ○(p0, C) = p1 ∈ X0, where p1 = ρ(⃗ı ⋅j).
Since both t1 and t2 are accepted by R starting from suitable initial states, i.e.,
ρ(⃗i ⋅ j ⋅ 1) and ρ(⃗i ⋅ (j + 1)), we know from the inductive hypothesis that there exist
some R-decompositions σ1 and σ2 for t1 and t2, respectively. We can thus obtain
an R-decomposition of t by letting

σ =def [p0 ∶ C] ([p1 ∶ a] (σ1, σ2)).

It remains to prove the upper bound to the number of nodes in σ. We first
observe that the construction that we just described gives an R-decomposition in

22 Pierre Bourhis et al.

which unary and binary nodes strictly alternate along any path (with the only
exception of the leaves which are labeled by nullary symbols). Moreover, the state
associated with any binary node and the state associated with its successor along
any path in σ belong to distinct components of R. This implies that the length
of any path in σ is at most twice the number of components in R, and hence the
total number of nodes in the decomposition σ is at most 22⋅∣SCC(R)∣. ⊓⊔

We now turn to explaining how decompositions of trees can be constructed
in a streaming way, namely, by means of a transducer. We begin by defining the
serialization σ̂ of an R-decomposition σ. In the same spirit of XML-encoding style,
we introduce opening and closing macro-tags for the symbols [p ∶ α] in [Σ]. The
important detail here is that we embed different strings inside the opening and
closing macro-tags, depending on the type of encoded label – as we shall see, this
corresponds to handling different pieces of information that become available at
different moments during a repair process. Formally:

– for each unary label [p ∶ C], with C context, we introduce the opening macro-
tag ⟨p ∶ Ĉprefix⟩ and the closing macro-tag ⟨/Ĉsuffix⟩ (recall that Ĉprefix is the
prefix of the serialization of the context C that ends immediately before ●,
while Ĉsuffix is the suffix that starts immediately after ●̄; note that Ĉsuffix = ε if
C is a horizontal context);

– for each binary label [p ∶ a], with a ∈ Σ, we introduce the opening macro-tag
⟨p ∶ a⟩ and the closing macro-tag ⟨/a⟩;

– for each nullary label [p ∶ ∅], we introduce the macro-tags ⟨p ∶ ∅⟩ and ⟨/∅⟩.

The serialization σ̂ of σ is defined in the same way as for unranked trees. Note that
it is always possible to tell apart the opening macro-tags of unary symbols from
the opening macro-tags of binary symbols, as the latter ones are of the form ⟨p ∶ a⟩,
where δ(p, a) = (p1, p2) and the components of p1 and p2 are different from that of
p. In particular, this means that the serialization σ̂ can be used as a representation
of the decomposition σ.

Remark 1 To describe a transducer that receives as input a serialized tree t̂ and
produces the serialization σ̂ of an R-decomposition of t – and more generally to
manipulate similar types of streams – it is convenient to think of an opening or
closing macro-tag of the form ⟨p ∶ α⟩ or ⟨/α⟩ as a string over the extended finite
alphabet Σ ⊎ Σ̄ ⊎ P ⊎ { ⟨, ⟩, /, ∶, ∅ }. Through the rest of this section, we will
adopt this latter presentation of macro-tags. Accordingly, we will assume that the
serialization σ̂ of an R-decomposition is a string over a finite alphabet.

Example 2 (continued) The serialization of the R-decomposition σ of Figure 5 be-
gins with a string of the form

⟨pr0 ∶ rrr⟩ ⟨pa0 ∶ aaa⟩ ⟨pa1 ∶ aaaaaa⟩ ⟨pa1 ∶ ∅⟩ ⟨/∅⟩ ⟨/āāāāāā⟩ ⟨pd0 ∶ ddd⟩ ⟨pb0 ∶ bbb⟩ ⟨pa1 ∶ aaaaaa⟩ ⟨pa1 ∶ ∅⟩ ⟨/∅⟩ . . .

Observe that the projection of the above string onto the letters of Σ ⊎ Σ̄ (written
in bold for the sake of readability) gives exactly the serialization of the tree t.

The idea for producing a serialized decomposition σ̂ from an input serialized
tree t̂ follows essentially the same construction that was given in the proof of

Which XML schemas are streaming bounded repairable? 23

Lemma 1. The fact that this construction is compatible with a streaming process-
ing stems from the crucial assumption that the automaton R is top-down deter-

ministic. More precisely, one observes that for every node ı⃗ ⋅ j in the run ρ, the
state ρ(⃗ı ⋅ j) depends only on the labeling of the nodes of t that precede ı⃗ ⋅ j in
the lexicographic order – this basically coincides with the notion of state reached

by R on a prefix of t̂ (cf. beginning of Section 3.2). The latter property allows one
to construct the path π of the proof of Lemma 1 in a streaming fashion, namely,
as longer and longer prefixes of the input serialization t̂ are disclosed. In a similar
way, and as long as the reached state stays in the initial component X0 of R, one
can build up longer and longer prefixes of the opening macro-tag ⟨p0 ∶ Ĉprefix⟩ that
corresponds to the first node of the R-decomposition. We observe that the prefix
⟨p0 ∶ of this opening macro-tag can be output right at the beginning, and that
the subsequent symbols of Ĉprefix can be extracted in a streaming way from the
input. When the path π cannot be extended further (e.g. when an input symbol
induces a transition leaving X0 with both successor states), the opening macro-tag
⟨p0 ∶ Ĉprefix⟩ is terminated and the construction may proceed in a recursive manner
from the newly visited components. Note that the state reached in a new compo-
nent is immediately determined thanks to top-down determinism and can play the
same role as the initial state p0 during the recursive processing. Moreover, once
the sub-processing terminates, the closing macro-tag ⟨/Ĉsuffix⟩ can be extracted
from the continuation of the input.

We have just described informally a transducer Z1 that receives an input serial-
ization t̂ of a tree t ∈ L (R) and produces the serialization σ̂ of anR-decomposition
of t. We omit the tedious details of the definition and correctness of Z1. Instead,
we observe that the content of the input serialization t̂ is reproduced unchanged
inside the serialized decomposition σ̂, i.e. t̂ can be recovered from σ̂ by replacing
the macro-tags ⟨p ∶ α⟩ and ⟨/α⟩ with their contents α in the form of strings. We
can thus think of Z1 as a streaming repair process from the restriction language
L (R) to the language of all serialized R-decompositions. The aggregate cost of
this repair process is linear in the number of macro-tags produced in the output
(or, equally, in the number nodes of the decomposition. In particular, thanks to

Lemma 1, the worst-case aggregate cost of Z1 is 2O(∣SCC(R)∣).

4.2 Transducer Z2: simulating a play

The goal of the second transducer Z2 is to derive from its input – i.e. the seri-
alized R-decomposition σ̂ of some tree t ∈ L (R) – a corresponding play for the
simulation game over GR,T . The play will be generated by a sequence of moves
taken alternatively by Generator, Repairer, and Referee, and interleaved with the
opening and closing macro-tags from the input stream σ̂. Intuitively, the moves
of Generator are obtained by lifting the run of R on t to the level of the strongly
connected components; the moves of Repairer instead are obtained from his win-
ning strategy W (recall that this is a function mapping any position in the arena

GR,T that is owned by Repairer to a sequence of prefix-rewriting steps T↦).
We recall that the serialized decomposition σ̂ contains macro-tags of the

form ⟨p ∶ α⟩ or ⟨/α⟩, which are seen as strings over the finite alphabet ⟨Σ⟩ =
Σ ⊎ Σ̄ ⊎ P ⊎ { ⟨, ⟩, /, ∶, ∅ }. In order to be able to annotate the serialized decompo-

24 Pierre Bourhis et al.

sition σ̂ with a corresponding play over the arena GR,T , we introduce an additional
alphabet Ξ = SCC(R)⊎SCC(T)⊎{⊲, J, K,⟪,⟫, L, M}. Hereafter, we will identify plays
over GR,T with their string encodings over Ξ.

We begin by describing the crucial properties that must be satisfied by the
output of Z2, which is a string over ⟨Σ⟩ ⊎Ξ called ‘annotated decomposition’.

Definition 3 An annotated R-decomposition is a sequence π of symbols in ⟨Σ⟩⊎Ξ
such that:

– the projection of π onto ⟨Σ⟩ gives a serialized R-decomposition σ̂, devoid of
all occurrences of macro-tags ⟨p ∶ a⟩ and ⟨/a⟩, with a ∈ Σ;

– the projection of π onto Ξ gives a valid play over the arena GR,T ;
– let π′ be a prefix of π and let pos(π′) denote the position in the arena GR,T

that is reached by the last move encoded in π′; if π′ ends with an opening
macro-tag ⟨p ∶ α⟩, or with a closing macro-tag matching ⟨p ∶ α⟩, then pos(π′) is
a position owned by Generator, say pos(π′) = J x⃗ , y⃗ K, and the state p belongs
to the component top(x⃗) at the top of the stack x⃗.

Remark 2 From the definition of decomposition tree (cf. second item of Definition
2) and that of annotated decomposition (cf. the last item of Definition 3), we
derive the following crucial properties. Suppose that π′ is a prefix of an annotated
R-decomposition π ending with an opening macro-tag ⟨p ∶ Ĉprefix⟩, and suppose
that ⟨/Ĉsuffix⟩ is the matching closing macro-tag in π. If pos(π′) = J x⃗ , y⃗ K, then the
state δ○(p,C) is well defined and belongs to the component top(x⃗). In particular,
the context C belongs to the language L (R ∣ top(x⃗)). Moreover, we know from the
definition of the arena GR,T (cf. moves for Repairer in Definition 1) that L (R ∣
top(x⃗)) ⊆ L (T ∣ top(y⃗)), and hence C ∈ L (T ∣ top(y⃗)). The above properties will
be used later in Section 4.3 to transform an annotated decomposition of t ∈ L (R)
into a decomposition of a tree t′ in the target language L (T).

We now turn to describing how the transducer Z2 transforms the serializa-
tion of an R-decomposition σ̂ into an annotated R-decomposition π by inserting
appropriate moves of Generator, Repairer, and Referee.

While constructing the annotated decomposition, the transducer will focus on
the occurrences in σ̂ of the opening macro-tags of the form ⟨p ∶ a⟩, with a ∈ Σ,
δ(p, a) = (p1, p2), and with the components of p1 and p2 different from that of p.
We call these tags binary macro-tags, in analogy with the binary symbols [p ∶ a]
of the ranked alphabet of the decomposition. Recall that every occurrence of a
binary macro-tag in σ̂ originates from a transition of R that induces a change of
component in both successor states: this is precisely the moment where we need
to simulate a push-and-swap move of Generator. Similarly, we need to simulate
a pop move of Generator each time we complete a visit of a left or right subtree
rooted at a binary node of the decomposition.

It is convenient to describe the transducer Z2 as a recursive editing process. To
correctly exploit recursion, we need to assume that the output π depends, not only
on the serialized decomposition σ̂, but also on a parameter ⟪ x⃗0 , y⃗0⟫ that represents
a generic initial position of the arena GR,T – this position is owned by Repairer and
during the recursive calls will be updated so as to construct a valid play. To stress
the dependency of the annotated decomposition π in terms of both parameters σ̂

Which XML schemas are streaming bounded repairable? 25

and ⟪ x⃗0 , y⃗0⟫, we will use the functional notation π(σ̂,⟪ x⃗0 , y⃗0⟫). Moreover, we will
assume that recursive calls can be made on any infix of a serialized decomposition
σ̂, provided that the binary macro-tags in it are well-matched.

The first step of the editing process consists of applying Repairer’s winning
strategy W to the initial position ⟪ x⃗0 , y⃗0⟫ and derive in this way the first move
that will be inserted in the annotated decomposition:

W(⟪ x⃗0 , y⃗0⟫) =
⎧⎪⎪⎨⎪⎪⎩

⟪ x⃗0 , y⃗0⟫ Rep↦ J x⃗0 , y⃗
′
0 K if top(x⃗0) is horizontal,

⟪ x⃗0 , y⃗0⟫ Rep↦ L x⃗0 , y⃗
′
0 M otherwise.

If the component top(x⃗0) at the top of the stack x⃗0 is non-horizontal, then the
above move is immediately followed by a move of Referee, which inserts the sep-
arator symbol ⊲ below the top elements of the two stacks x⃗0, y⃗

′
0; this results in a

move of the form

L x⃗0 , y⃗
′
0 M Ref↦ J x⃗1 , y⃗1 K where

⎧⎪⎪⎨⎪⎪⎩

x⃗1 = top(x⃗0) ⋅ ⊲ ⋅ tail(x⃗0)
y⃗1 = top(y⃗′0) ⋅ ⊲ ⋅ tail(y⃗′0)

Otherwise, if the top component top(x⃗0) is horizontal, we simply let x⃗1 = x⃗0 and
y⃗1 = y⃗′0.

We now focus on the first occurrence in σ̂ of a binary opening macro-tag ⟨p ∶ a⟩,
together with the matching occurrence of the closing macro-tag ⟨/a⟩ (if there are
no such occurrences, then we simply skip all the following steps and we just append
to the previous moves the annotated decomposition σ̂). We factorize σ̂ as follows:

σ̂ = σ̂1 ⋅ ⟨p ∶ a⟩ ⋅ σ̂2 ⋅ σ̂3 ⋅ ⟨/a⟩ ⋅ σ̂4

where σ̂1 is a prefix of σ̂ (not necessarily a well-matched string) that contains no
occurrences of binary macro-tags, σ̂2 and σ̂3 are well-matched infixes encoding
valid R-decomposition (sub-)trees, and σ̂4 is a suffix of σ̂ (not necessarily well-
matched, but containing well-matched binary macro-tags).

The prefix σ̂1 of the input will be reproduced by the transducer without mod-
ifications. On the other hand, the first opening binary macro-tag ⟨p ∶ a⟩ will be
replaced by the following move of Generator:

J x⃗1 , y⃗1 K Gen↦ ⟪ x⃗′1 , y⃗1⟫ where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x⃗′1 = X1X2 ⋅ tail(x⃗1)
X1 = component of p1

X2 = component of p2

(p1, p2) = δ(p, a).

Note that the symbol a in the binary macro-tag ⟨p ∶ a⟩ gets lost during the transduc-
tion. This, however, is not problematic for the repair process, since only boundedly
many such symbols can disappear. Also observe that the new position ⟪ x⃗′1 , y⃗1⟫ is
owned by Repairer (i.e. Referee does not enter the game here).

The transducer will then process the infix σ̂2 in a recursive manner,
starting from position ⟪ x⃗′1 , y⃗1⟫ and outputting an annotated decomposition
π(σ̂2,⟪ x⃗′1 , y⃗1⟫). After the first recursive call, the most recent position reached
by the annotated decomposition is owned by Generator; we denote this position

26 Pierre Bourhis et al.

by J x⃗2 , y⃗2 K. Moreover, since the left subtree of a binary node in the decomposition
σ has just been visited, the transducer appends a pop move of the form

J x⃗2 , y⃗2 K Gen↦ ⟪ x⃗′2 , y⃗2⟫ whenever top(x⃗′2) ≠ ⊲, or

J x⃗2 , y⃗2 K Gen↦ L x⃗′2 , y⃗2 M otherwise.

where x⃗′2 = tail(x⃗2). If the top element of the stack x⃗′2 happens to be a separator
symbol ⊲, then the appropriate move of Referee is also added:

L x⃗′2 , y⃗2 M Ref↦ ⟪ x⃗3 , y⃗3⟫

(otherwise, we simply assume x⃗3 = x⃗′2 and y⃗3 = y⃗2).
Subsequently, the transducer makes a second recursive call starting from po-

sition ⟪ x⃗3 , y⃗3⟫ and transforming the infix σ̂3 into the annotated decomposition
π(σ̂3,⟪ x⃗3 , y⃗3⟫). As before, a new position J x⃗4 , y⃗4 K owned by Generator is reached
and a second pop move is inserted, possibly followed by an appropriate move of
Referee:

J x⃗4 , y⃗4 K Gen↦ L x⃗′4 , y⃗4 M Ref↦ ⟪ x⃗5 , y⃗5⟫ where x⃗
′
4 = tail(x⃗4)

(again, we assume that x⃗5 = x⃗′4 and y⃗5 = y⃗4 if Referee does not enter the game).
Finally, the transducer removes the next incoming closing macro-tag ⟨/a⟩ and

makes a third recursive call to edit the remaining suffix σ̂4. This results in a
sequence π(σ̂4,⟪ x⃗5 , y⃗5⟫).

Putting all together, the output produced by Z2 is a sequence of the form

π(σ̂,⟪ x⃗0 , y⃗0⟫) =def ⟪ x⃗0 , y⃗0⟫ Rep↦ L x⃗0 , y⃗
′
0 M

Ref↦ J x⃗1 , y⃗1 K ⋅

σ̂1 ⋅ J x⃗1 , y⃗1 K Gen↦ ⟪ x⃗′1 , y⃗1⟫ ⋅

π(σ̂2,⟪ x⃗′1 , y⃗1⟫) ⋅ J x⃗2 , y⃗2 K Gen↦ L x⃗′2 , y⃗2 M Ref↦ ⟪ x⃗3 , y⃗3⟫ ⋅

π(σ̂3,⟪ x⃗3 , y⃗3⟫) ⋅ J x⃗4 , y⃗4 K Gen↦ L x⃗′4 , y⃗4 M Ref↦ ⟪ x⃗5 , y⃗5⟫ ⋅
π(σ̂4,⟪ x⃗5 , y⃗5⟫).

It is easy to verify that if σ̂ is the serialization of a complete R-decomposition tree
and ⟪ x⃗0 , y⃗0⟫ is the initial position of the arena GR,T , then π(σ̂,⟪ x⃗0 , y⃗0⟫) is an
annotated R-decomposition for σ̂. In particular, the projection of this sequence
onto the alphabet Ξ is a valid play for the simulation game over GR,T , while the
projection onto Σ ⊎ Σ̄ is a sub-sequence of the serialization t̂ of a tree in L (R).

We have just described a transducer Z2 that transforms an input serialized
R-decomposition σ̂ into an annotated R-decomposition π. We observe that, for a
fixed winning strategy W , the amount of editing required by this transformation
is linear in the number of occurrences of macro-tags in σ̂.

4.3 Transducer Z3: choosing states in the target

This subsection focuses on the third transducer Z3 and it is the place where many
pieces of the puzzle so far outlined come together. We will exploit, for instance,
properties derived from the rules of the simulation game over the arena GR,T , as

Which XML schemas are streaming bounded repairable? 27

well as the notion of annotated decomposition. We will also see how exactly the
moves of Referee and the use of separator symbols come into play.

Before entering the details, we recall that the transducer Z3 receives as input
an annotated R-decomposition, which consists of a serialized decomposition of a
tree annotated with partial runs of R on the factors and with a corresponding play
inside the arena GR,T . Intuitively, the goal of Z3 is to transform the partial runs
of R into partial runs of T on the same factors. Thanks to a technical lemma that
we shall disclose soon, such a transformation of partial runs can be derived from
the moves of Repairer that annotate the input R-decomposition (further details
will be given after Definition 4).

We begin by showing how to extract partial runs of T from an annotated R-
decomposition. The key lemma exploits the containment of languages of contexts
realizable within single components of the restriction and target automata. To
formalize the statement, we need to parametrize languages of realizable contexts
with respect to a specific initial state. Formally, for a given top-down deterministic
tree automaton A = (Σ,P, δ, p0, F), a given component X of A, and a given state
p ∈ X, we define the language of all contexts realizable in X starting from state p as
follows:

L (A ∣pX) =def {C ∶ δ○(p,C) ∈ X}.

Clearly, we have:
L (A ∣ X) = ⋃

p∈X

L (A ∣pX).

Lemma 2 Let X be a component of the restriction automaton R and let Y be a

component of the target automaton T such that L (R ∣ X) ⊆ L (T ∣ Y). Then,

∀ p ∈ X. ∃ q ∈ Y . L (R ∣pX) ⊆ L (T ∣q Y).

Proof. Let R = (Σ,P, δ, p0, F), T = (∆,Q, γ, q0,G), X ∈ SCC(R), and Y ∈ SCC(T).
We prove the contrapositive of the claim by exploiting an induction on the size of
the component Y . More precisely, we assume that Y = {q1, . . . , qn} and that there
is p ∈ X such that L (R ∣pX) ⊈ L (T ∣q Y) for all q ∈ Y . From this we derive the
existence of a sequence of contexts C1, . . . , Cn such that, for all 1 ≤ j ≤ i ≤ n,

Ci ∈ L (R ∣pX) ∖L (T ∣qj Y).

Note that the non-containment L (R ∣ X) ⊈ L (T ∣ Y) follows immediately from
letting i = n.

For the base case i = 1, we use the assumption L (R ∣pX) ⊈ L (T ∣q1 Y) to
derive the existence of a context C1 ∈ L (R ∣pX) ∖L (T ∣q1 Y).

The idea for the inductive step consists of combining a context Ci obtained
from the inductive hypothesis and a context C′ witnessing the non-containment
L (R ∣pX) ⊈ L (T ∣qi+1 Y); to correctly combine these contexts, a third context C
will be inserted, which connect pairs of states in the same component X ofR. More
precisely, let p be some state in X and Ci some context satisfying the inductive
hypothesis Ci ∈ L (R ∣pX)∖L (T ∣qj Y) for all 1 ≤ j ≤ i. We consider the behavior of
the target automaton T on the context Ci starting from state qi+1. If γ○(qi+1, Ci)
is undefined or does not belong to the component Y , then we simply let Ci+1 = Ci
so as to get Ci+1 ∉ L (T ∣qj Y) for all j ≤ i + 1. Otherwise, we let q′i+1 = γ○(qi+1, Ci)
(∈ Y). We recall that Ci ∈ L (R ∣pX) and we let p′ = δ○(p,Ci) ∈ X. Since the

28 Pierre Bourhis et al.

states p, p′ in X are mutually reachable, we know that there exists a context
C such that δ○(p′, C) = p, whence δ○(p,Ci ○ C) = p. We then use the original
assumption L (R ∣pX) ⊈ L (T ∣q′

i+1 Y) to derive the existence of a third context C′

in L (R ∣pX)∖L (T ∣q′
i+1 Y). Putting everything together, we see that the context

Ci+1 = Ci ○C ○C′ belongs to L (R ∣pX), but not to L (T ∣qj Y), for all j ≤ i+1. ⊓⊔

We now introduce the concept of ‘partial decomposition’ for the target automa-
ton T . This concept is aimed towards defining the output of the third transducer
Z3 and can be seen as a weakening of the notion ofR-decomposition (Definition 2).
In a similar way as we did for R-decompositions, we introduce an infinite alphabet
[∆] consisting of

– symbols of the form [q ∶ C], where q is a state of T and C is a context over ∆,
– symbols of the form [q ∶ a], where q is a state of R and a is a letter in ∆.

The main differences with Definition 2 are that (i) the underlying alphabet is now
unranked (in particular, the nodes of the partial decomposition that are labeled
by [q ∶ C] can be either internal nodes or leaves), (ii) the contexts C associated
with the nodes of the form [q ∶ C] are not anymore assumed to be realized within
a single component, (iii) the successor states (q1, q2) = γ(q, a) associated with a
node of the form [q ∶ a] could remain inside the same component, and (iv) for a
node [q ∶ C] and its successor [q′ ∶ α], the states q′ and γ○(q,C) may be distinct,
but still reachable one from the other.

Definition 4 Let T = (∆,Q, γ, q0,G) be a target automaton. A partial T -

decomposition is an unranked tree τ labeled over [∆] such that:

– for every node labeled with [q ∶ C], the state q1 = γ○(q,C) is well defined;
furthermore, if the node is not a leaf, then it has exactly one child labeled with
a symbol of the form [q′1 ∶ α], with q′1 belonging to the same component as q1;

– for every node labeled with [q ∶ a], the pair of states (q1, q2) = γ(q, a) is well
defined; furthermore, the node has two children labeled with symbols of the
form [q′1 ∶ α1] and [q′2 ∶ α2], with q′1 is in the same component as q1, and q′2 is
in the same component as q2.

The serialization of a partial T -decomposition τ consists, as usual, of opening
macro-tags of the form ⟨q ∶ Ĉprefix⟩ or ⟨q ∶ a⟩, matched by closing macro-tags of the
form ⟨/Ĉsuffix⟩ or ⟨/ā⟩.

As we already mentioned, the goal of transducer Z3 is to transform an anno-
tated R-decomposition π into the serialization of some partial T -decomposition τ .
Intuitively, this is done by replacing all opening macro-tags ⟨p ∶ Ĉprefix⟩ in π with
corresponding macro-tags of the form ⟨q ∶ Ĉprefix⟩, where q is a state of the target
automaton whose dependency from p is derived from Lemma 2. In addition, bi-
nary nodes of the form [q ∶ a] will be inserted in the partial decomposition tree
in order to have some branching: these nodes will be derived from the atomic
push-and-swap moves that were chosen by Repairer and encoded in the annotated
decomposition π. Finally, we will implicitly perform a ‘repositioning’ of some clos-
ing macro-tags ⟨/Ĉsuffix⟩ inside π, but only under the proviso that the encoded
context C is horizontal (in this case, we observe that Ĉsuffix = ε and that the repo-
sitioning can be done at bounded cost). Roughly speaking, the repositioning of

Which XML schemas are streaming bounded repairable? 29

τ ∶ [pr0 ∶ r]

[pa0 ∶ a]

[pa1 ∶ a(a(●))a(a(●))a(a(●))]

[pa1 ∶ ∅]

[pd0 ∶ d]

[pb0 ∶ b]

[pa1 ∶ a(a(●))a(a(●))a(a(●))]

[pa1 ∶ ∅]

[pc0 ∶ c c c ●c c c ●c c c ●]

[pc0 ∶ ∅]

[f ∶ ∅]

[f ∶ ∅]

σ ∶ [qr0 ∶ r]

[qe0 ∶ e]

[qa0 ∶ a]

[qa1 ∶ a(a(●))a(a(●))a(a(●))] [qa1 ∶ a(a(●))a(a(●))a(a(●))]

[qc0 ∶ c c c ●c c c ●c c c ●]

[f ∶ ●]

Fig. 6 An R-decomposition τ and a corresponding partial T -decomposition σ.

closing macro-tags with horizontal contexts corresponds to hedge movements that
are induced by deletions and insertions of nodes inside concrete unranked trees
(see next example). As a matter of fact, a similar phenomenon was taken into
account also in [18] for characterizing bounded repairability in the non-streaming
setting.

Example 2 (continued) In Figure 6 we reproduce the R-decomposition σ of the
tree t ∈ L (R) of Figure 5, and we give the corresponding partial T -decomposition
τ that is produced by Z3 (due to space constraints, we omit the intermediate
annotated R-decomposition π that forms the input of this transducer). We observe
that the single-letter nodes from σ are removed during the process, and new binary
nodes are added. Moreover, all unary nodes of σ are copied into τ , with only small
changes due to the new associated states and the repositioning of the node with
the horizontal context c c c ●.

Lemma 3 below focuses on transforming an annotated R-decomposition π into
a partial T -decomposition τ . During the transformation it is important to pre-
serve most of the string content from the input – this will be useful to prove
that the global editing strategy has uniformly bounded cost. Specifically, we will
consider the order of occurrence of the non-empty strings of the form Ĉprefix that
appear inside the opening macro-tags of the annotated R-decomposition π. For-
mally, by this order of occurrence we mean the maximal sequence of non-empty
strings Ĉ

prefix
0 , . . . , Ĉ

prefix
n for which there exists a sub-sequence of π of the form

⟨p0 ∶ Ĉprefix
0 ⟩, . . . , ⟨pn ∶ Ĉprefix

n ⟩. The lemma below shows precisely how to transform
π into a serialized partial T -decomposition τ̂ by preserving the occurrence order of
the non-empty strings Ĉprefix. Later, we will see how to exploit this property in or-
der to compute the same transformation by means of a transducer with uniformly
bounded cost.

Lemma 3 For every annotated R-decomposition π, there is a partial T -decomposition

τ such that the occurrence order in π of the non-empty strings of the form Ĉprefix is

preserved in the sequence τ̂ .

Proof. We begin with a series of assumptions related to the given annotated R-
decomposition π. Here, we will mostly overlook the moves of Generator and Referee

30 Pierre Bourhis et al.

that appear in π, as these were already exploited for finding the corresponding
moves of Repairer and the corresponding positions in the arena GR,T . It will be
also convenient to think of π as a sequence consisting of macro-tags ⟨p ∶ α⟩ and ⟨/α⟩
interleaved with prefix-rewriting operations on the stack controlled by Repairer.
More precisely, we encode each move of Repairer that appears in π by a sequence
of basic prefix-rewriting steps of the form Y ↦ Y1 Y2 or Y ↦ ε – note that the
encoding omits the content of the stacks below the top elements, since this can be
easily reconstructed from the basic push-and-swap and pop operations (see Section
3.2). For the sake of brevity, we call atomic operations the basic prefix-rewriting
steps that occur in π and are applied to single components of T . We also assume,
without loss of generality, that the sequence π is such that the last visited position
pos(π) is owned by Generator and is of the form J x⃗ , y⃗ K, with y⃗ singleton (if this
is not the case, it is sufficient to append to π a sequence of atomic pop operations
acting on the stack controlled by Repairer).

The proof of the lemma is based on an induction on the nesting structure of
the atomic operations executed by Repairer in the annotated decomposition π. To
formalize the induction principle, we associate with each factor (i.e. infix) π′ of
π a number height(π′) that is obtained by counting the occurrences of push-and-
swap operations and subtracting the number of occurrences of pop operations.
Intuitively, the value height(π′) describes the difference in the height of the stack
controlled by Repairer at the beginning and at the end of the factor π′ (separator
symbols do not count for this height). We then say that a factor π′ is well-balanced

if we have height(π′) = 0 and height(π′′) ≥ 0 for all prefixes π′′ of π′. Furthermore,
we say that an occurrence of a well-balanced factor π′ is delimited inside π if it is
either π itself or is surrounded by atomic operations (i.e. Y ↦ Y1 Y2 and Y ↦ ε).
Finally, we denote by maxheight(π′) the maximum of height(π′′) over all prefixes
π′′ of π′, and by grounds(π′) the number prefixes π′′ of π′ such that height(π′′) = 0.

We now turn to the core proof of the lemma, which associates with each de-
limited occurrence π′ of a well-balanced factor of π a corresponding partial T -
decomposition τ(π′). The proof exploits a double induction based on the param-
eters maxheight(π′) and grounds(π′), where the former is the dominant one.

The base case amounts to considering a delimited occurrence of a well-balanced
factor π′ of π such that maxheight(π′) = 0. By construction, the considered factor
π′ contains no atomic operations. In particular, π′ contains a series of opening
macro-tags of the form ⟨p ∶ Ĉprefix⟩, which are matched by corresponding closing
macro-tags either inside or outside π′. Suppose that these opening macro-tags
occur in π′ with the following order

⟨p1 ∶ Ĉprefix
1 ⟩ . . . ⟨p2 ∶ Ĉprefix

2 ⟩ . . . ⟨pn ∶ Ĉprefix
n ⟩ . . .

and let ⟨/Ĉsuffix
1 ⟩, ⟨/Ĉsuffix

2 ⟩, . . ., ⟨/Ĉsuffix
n ⟩ be the matching occurrences of the corre-

sponding closing macro-tags (not necessarily inside π′). We further let J x⃗ , y⃗ K be
the most recent position that is reached in the annotated decomposition π im-
mediately before the occurrence of the factor π′. Because maxheight(π′) = 0, in π′

there is no atomic operation on the stack controlled by Repairer, and hence all
the states p1, p2, . . . , pn belong to the same component top(x⃗) of R. Moreover, we
know from the definition of the arena GR,T that

L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗)).

Which XML schemas are streaming bounded repairable? 31

Thus, we can apply Lemma 2 to the states pi ∈ top(x⃗) and obtain in this way some
corresponding states qi ∈ top(y⃗) such that

Ci ∈ L (T ∣qi top(y⃗)).

We can now define the partial T -decomposition τ(π′) associated with π′. Intu-
itively, this has the shape of a vertical chain of unary nodes [q1 ∶ C1], [q2 ∶ C2],
. . ., [qn ∶ Cn]. Formally, we let

τ(π′) =def [q1 ∶ C1] ([q2 ∶ C2] (. . . [qn ∶ Cn] . . .)).

However, since we need to always construct non-empty partial T -decompositions,
we need to treat in a different way the degenerate case where n = 0. Specifically,
if π′ contains no macro-tag of the form ⟨p ∶ Ĉprefix⟩, then we let τ(π′) consist of
a single dummy node of the form [q ∶ ●], where q is any arbitrary state in the
component top(y⃗) and ● denotes the trivial context. It is straightforward to see
that, in any case, the occurrence order of the strings of the form Ĉprefix inside π′

is preserved in the transformed sequence τ̂(π′).
We now give a proof of the inductive step. For this we consider a delimited

occurrence π′ of a well-balanced factor of π, with maxheight(π′) > 0. The factor π′

contains at least one atomic operation on the stack controlled by Repairer. Clearly,
the first atomic operation in π′ must be a push-and-swap operation of the form
Y ↦ Y1 Y2, and this must be eventually followed by a corresponding pop operation
of the form Y ′ ↦ ε. We accordingly factorize π′ as follows:

π
′ = π1 ⋅ Y ↦ Y1 Y2 ⋅ π2 ⋅ Y ′ ↦ ε ⋅ π3

where π1, π2, π3 are delimited occurrences of well-balanced factors such that
maxheight(π1) = 0, maxheight(π2) < maxheight(π′), maxheight(π3) ≤ maxheight(π′),
and grounds(π3) < grounds(π′). Using the inductive hypothesis we can transform
π1, π2, π3 into corresponding partial T -decompositions τ(π1), τ(π2), τ(π3), whose
serializations preserve the occurrence order of the strings of the form Ĉprefix inside
π1, π2, π3, respectively. Moreover, we observe that the partial T -decomposition
τ(π1) is a vertical chain of nodes of the form [q ∶ C]; we can thus write τ(π1) (τ ′) to
denote the tree obtained by attaching a sub-tree τ ′ to the leaf of τ(π1). Towards a
conclusion, we recall that Y ↦ Y1 Y2 is an atomic operation of the prefix-rewriting

system T↦ and we derive from this the existence of a transition of T of the form
γ(q, a) = (q1, q2), with q ∈ Y , a ∈ ∆, q1 ∈ Y1, q2 ∈ Y2. Finally, we transform the
factor π′ into the following partial T -decomposition:

τ(π′) =def
τ(π1) ([q ∶ a] (τ(π2), τ(π3))).

As before, it is straightforward to see the occurrence order of the strings of the
form Ĉprefix in π′ is preserved in the transformed sequence τ̂(π′). ⊓⊔

We now turn to explaining how the construction given in the above lemma can
be implemented by means of a transducer Z3. For this we will reuse some of the
concepts that were introduced in the proof, in particular, the notion of delimited
occurrence of a well-balanced factor of π.

32 Pierre Bourhis et al.

A first inspection of the proof of Lemma 3 reveals that the ancestor relation on
the nodes of the partial T -decomposition τ respects the nesting structure of the
delimited occurrences of well-balanced factors of π. As a consequence, the preorder
visit of the nodes [q ∶ C] in τ follows the exact ordering of the corresponding
opening macro-tags ⟨p ∶ Ĉprefix⟩ inside π: this allows us to correctly gather the
strings Ĉprefix that will form the opening macro-tags of the serialization τ̂ of τ .
What remains to verify is that the preorder visit of the nodes [q ∶ C] in τ is also
compatible with the ordering of the matching closing macro-tags ⟨/Ĉsuffix⟩, with the
only possible exception of some horizontal contexts C, for which we have Ĉsuffix = ε
– this means that, in any case, the strings Ĉsuffix are determined before closing
the macro-tags of the corresponding nodes of the partial decomposition τ . These
constraints are formalized in the lemma below as a matching property between the
opening and closing macro-tags inside a delimited occurrence of a well-balanced
factor of π. The proof exploits in a crucial way the rules of the simulation game
over GR,T and, in particular, the role of Referee in inserting/removing separator
symbols at the appropriate moments.

Lemma 4 Let π be an annotated R-decomposition. Inside any delimited occurrence of

a well-balanced factor of π, all opening and closing macro-tags are well-matched, with

the only exception of the macro-tags of the form ⟨p ∶ Ĉprefix⟩ and ⟨/Ĉsuffix⟩ where C is

a horizontal context.

Proof. We consider a delimited occurrence π′ of a well-balanced factor of π and
we accordingly factorize π as π1 ⋅ π′ ⋅ π2, where π1 ends with an atomic operation
and π2 begins with an atomic operation. We then consider an occurrence of an
opening macro-tag ⟨p ∶ Ĉprefix⟩ inside π′, where C is a vertical context. We need to
argue that the factor π′ contains the matching occurrence of the closing macro-tag
⟨/Ĉsuffix⟩ (symmetric arguments can be used to prove that all closing macro-tags
are matched by opening macro-tags in the same factor π′).

The definition of annotated decomposition (cf. third item of Definition 3) im-
plies that the most recent position of the arena GR,T that is visited before the

occurrence of the opening macro-tag ⟨p ∶ Ĉprefix⟩ is owned by Generator and it is
of the form J x⃗ , y⃗ K, with p ∈ top(x⃗).

We also recall that the projection of π onto the opening and closing macro-tags
gives the serialization of some R-decomposition tree, devoid of binary nodes. In its
turn, the definition of R-decomposition (cf. second item of Definition 2) implies
δ○(p,C) ∈ top(x⃗). Since C is a vertical context, the component top(x⃗) at the top
of the stack x⃗ must be non-horizontal.

We then recall the rules of the simulation game over GR,T (cf. first item of the
moves of Referee, Definition 1) and we observe that Repairer and Referee must have
entered the game just before the occurrence of the opening macro-tag ⟨p ∶ Ĉprefix⟩.
In particular, some separators must be placed below the top components of the
two stacks x⃗ and y⃗, say x⃗ = X ⋅ ⊲ ⋅ x⃗′′ and y⃗ = Y ⋅ ⊲ ⋅ y⃗′′.

Now, since π′ is a delimited occurrence of a well-balanced factor, we know that
height(π1) = height(π1 ⋅ π2) ≤ ∣y⃗∣ and that either π2 is empty or it begins with a
pop operation applied to the stack controlled by Repairer. If π2 is empty, then
π′ clearly contains the matching occurrence of the closing macro-tag ⟨/Ĉsuffix⟩.
Otherwise, we observe that after executing the first pop operation in π2, at least
the top component Y is removed from the stack y⃗ = Y ⋅ ⊲ ⋅ y⃗′′. However, because y⃗

Which XML schemas are streaming bounded repairable? 33

has a separator just below Y , the only way the component Y can be removed from
y⃗ is via a move of Generator followed by a move of Referee, that is, via a sequence
of operations of the form:

JX ⋅ ⊲ ⋅ x⃗′′ , Y ⋅ ⊲ ⋅ y⃗′′ K Gen↦ L⊲ ⋅ x⃗′′ , Y ⋅ ⊲ ⋅ y⃗′′ M Ref↦ ⟪ x⃗′′ , y⃗′′⟫.

Note that the first move above of Generator must appear inside the factor π′.
Finally, the definition of annotated R-decomposition (cf. again third item of Def-
inition 3) requires this move to be preceded by the matching occurrence of the
closing macro-tag ⟨/Ĉsuffix⟩. ⊓⊔

Following the proof of Lemma 3 one can easily construct a transducer Z3 that
receives as input an annotated R-decomposition π and produces as output the
serialization τ̂ of a partial T -decomposition. We omit the tedious definition of the
transducer Z3. Instead, we stress that, thanks to Lemma 3 and Lemma 4, the
occurrence order of the non-empty strings of the form Ĉprefix or Ĉsuffix is the same
in the input π and in the corresponding output τ̂ . Moreover, the transducer Z3

performs only small edits to transform the macro-tags of π to the macro-tags of τ̂ .
Finally, Z3 inserts, for each atomic operation on the stack of Repairer appearing
in π, a number of macro-tags that is at most exponential in the size of the target
automaton T . Overall, this means that Z3 can be seen as a repair process that has
aggregate cost at most linear in the number of macro-tags and moves of π, and at
most exponential in the size of T .

4.4 Transducer Z4: gluing the contexts

In this subsection we define the last step of the repair process, which completes an
input partial T -decomposition τ by adding contexts over ∆ that connect pairs of
reachable states of the target automaton T . After completing the partial decom-
position τ , one obtains a factorization τ ′ of some tree t′ ∈ L (T). In particular, we
will see that the projection of the serialization of τ ′ onto the target alphabet ∆⊎∆̄
coincides with the serialization t̂′ of t′. The transducer Z4 will output precisely
this serialization t̂′.

We start by defining complete decompositions for the target automaton. As
before, we let [∆] be the ranked alphabet consisting of unary labels [q ∶ C], binary
labels [q ∶ a], and nullary labels [q ∶ ∅], where q is a state of T , C is a context over
∆, and a is a letter from ∆. The following definition is very similar to that of R-
decomposition – only some constraints concerning strongly connected components
are removed.

Definition 5 Let T = (∆,Q, γ, q0,G). A complete T -decomposition is a ranked tree
τ ′ labeled over [∆] such that:

– the root is labeled with a unary, binary, or nullary symbol of the form [q0 ∶ α],
with q0 initial state of T ;

– for every node labeled with a unary symbol [q ∶ C], the state q′ = δ○(q,C) is
well defined; furthermore, the node has a unique child which is labeled with a
unary, binary, or nullary symbol of the form [q′ ∶ α];

34 Pierre Bourhis et al.

– for every node labeled with a binary symbol [q ∶ a], the pair of states (q1, q2) =
γ(q, a) is well defined; furthermore, the node has left and right children labeled
respectively with symbols [q1 ∶ α1] and [q2 ∶ α2];

– every node labeled with a nullary symbol [q ∶ ∅] is a leaf and q is a final state.

We say that τ ′ is a T -decomposition of a tree or forest t′ if and only if Jτ ′K = t′,
where

Jτ ′K =def

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if τ ′ = [q ∶ ∅],

C ○ Jτ ′1K if τ ′ = [q ∶ C] (τ ′1),

a(Jτ ′1K) ⋅ Jτ ′2K if τ ′ = [q ∶ a] (τ ′1, τ ′2).

Remark 3 It is easy to see that the tree t′ = Jτ ′K represented by a complete T -
decomposition τ ′ is accepted by the target automaton T . Moreover, the projection
of the serialization τ̂ ′ onto ∆ ⊎ ∆̄ coincides with the serialization t̂′ of t′.

The following lemma shows how to turn a given partial T -decomposition τ into
a complete T -decomposition τ ′ by inserting a linear number of nodes.

Lemma 5 For every partial T -decomposition τ , there is a complete T -decomposition

τ ′ such that the projection of τ̂ onto ∆ ⊎ ∆̄ is a sub-sequence of the projection of τ̂ ′

onto ∆⊎ ∆̄. Moreover, the number of nodes of τ ′ is linear in the number of nodes of τ .

Proof. The idea is to insert suitable contexts between adjacent nodes in the partial
decomposition τ in order to connect the various states.

More precisely, for each internal node ı⃗ of τ labeled with a symbol [q ∶ C],
we let q1 = γ○(q,C) (this is well defined) and we let q′1 be the state associated
with the unique successor of ı⃗. From the definition of partial T -decomposition
(cf. first item of Definition 4) we know that the two states q1 and q′1 belong to
the same component of T , and hence there is a context Cq1,q′1 over ∆ such that

γ○(q1, Cq1,q′1) = q′1. Accordingly, we insert a new node labeled with [q1 ∶ Cq1,q′1]
between the node ı⃗ and its successor.

Similarly, for each internal node ı⃗ of τ labeled with a symbol [q ∶ a], we let
(q1, q2) = γ(q, a) and we let q′1 and q′2 be the states associated with the left and right
successors of ı⃗, respectively. Using the fact that q1, q

′
1 (resp. q2, q

′
2) are in the same

component, we obtain a context Cq1,q′1 (resp. Cq2,q′2) such that γ○(q1, Cq1,q′1) = q
′
1

(resp. γ○(q2, Cq2,q′2) = q′2). We then insert a new node labeled with [q1 ∶ Cq1,q′1]
between the node ı⃗ and its left successor, and a new node labeled with [q2 ∶ Cq2,q′2]
between the node ı⃗ and its right successor.

The tree that results from the above insertions satisfies the second and third
item of Definition 5. To obtain a complete T -decomposition, it remains to insert a
new root with associated initial state and new leaves with associated final states.

Let q′0 be the state at the root of the partial decomposition τ . Since T is
trimmed, q′0 is reachable from the initial state q0, that is, there exists a context
Cq0,q′0 such that γ○(q0, Cq0,q′0) = q

′
0. We then insert a new root and label it with

[q0 ∶ Cq0,q′0]. Finally, for each leaf ı⃗ labeled with [q ∶ C], we let q1 = γ○(q,C). From
the fact that T is trimmed, we derive the existence of a tree or forest tq1 that is
accepted by T starting from state q1. We can thus form the horizontal context
Cq1 = tq1 ● in such a way that f = γ○(q1, Cq1) is a final state of T . Finally, we
append under the node ı⃗ a chain consisting a unary node labeled with [q1 ∶ Cq1]
and a leaf labeled with [f ∶ ∅].

Which XML schemas are streaming bounded repairable? 35

The tree τ ′ that is obtained from τ by performing all the above insertions is a
complete T -decomposition. Moreover, the transformation has clearly preserved all
nodes in τ , as well as the ancestor relation on them. This means that the projection
of τ̂ onto ∆ ⊎ ∆̄ is a sub-sequence of the projection of τ̂ ′ onto ∆ ⊎ ∆̄. ⊓⊔

We conclude the section by observing that the transformation from a partial
T -decomposition τ to a complete T -decomposition τ ′ can be easily implemented
at the level of the serializations by means of a transducer. Moreover, the projection
of τ̂ ′ onto ∆ ⊎ ∆̄ can be also implemented by a transducer and coincides with the
serialization t̂′ of a tree t′ ∈ L (T).

The transducer Z4 is nothing but the concatenation of the transformations
from τ̂ to τ̂ ′ and from τ̂ ′ to t̂′. In particular, it can be seen as a repair process that
transforms the serialization of a partial T -decomposition into the serialization of
a tree in the target language. The cost of this transformation is at most linear in
the number of macro-tags in τ̂ , and exponential in the size of T .

4.5 Correctness and cost of the compound transducer

We can now combine the four transducers Z1, Z2, Z3, Z4 described in the pre-
vious subsections into a cascade composition Z = Z4 ○ Z3 ○ Z2 ○ Z1. Formally,
we can compute this composition as a pipeline process whose internal memory
consists of the configurations of each transducer Zi plus the intermediate outputs
manipulated between them. Below, we argue that the compound transducer Z can
be regarded as a tree edit transducer implementing a streaming repair strategy
from the restriction language L (R) into the target language L (T) with bounded
aggregate cost.

First of all, it is clear from the previous results that if t̂ is the serialization of
a tree t ∈ L (R), then Z(t̂) is the serialization of some tree t′ ∈ L (T). Moreover,
it is not difficult to see that each of the transducers Z1, Z2, Z3, Z4 preserves
the matching relation on the tags a, ā that are not erased from the input – in
particular, we observe that, thanks to Lemma 4, the repositioning of the closing
macro-tags ⟨/Ĉsuffix⟩ that occurs during the third transduction does not affect the
matching relation on the tags that appear in Ĉsuffix, as this string is necessarily
empty. We can thus conclude that Z is a tree edit transducer.

We now analyse the worst-case aggregate cost of the repair strategy imple-
mented by Z. We start by considering the first transducer Z1, which transforms
a serialized tree t̂ into a serialized R-decomposition σ̂. We have seen that its ag-
gregate cost is at most exponential in the number of components of R – hence
uniformly bounded with respect to all possible inputs t̂ – and that the serialized
R-decomposition σ̂ contains 2O(∣SCC(R)∣) macro-tags. The second transducer Z2

transforms σ̂ into an annotated R-decomposition π, incurring an aggregate cost
that is at most linear in the number of macro-tags of π – again, uniformly bounded
for all possible inputs. Similar bounds hold for the remaining transducers Z3 and
Z4. Overall, we have that the aggregate cost of the compound transducer Z is
2O(∣SCC(R)∣⋅∣T ∣), which is uniformly bounded for all possible inputs t̂.

36 Pierre Bourhis et al.

5 From repairs to simulation games

In this section we prove the only-if direction of Theorem 1, namely, we assume the
existence of a tree edit transducer Z that implements a streaming repair strategy
from L (R) to L (T), with uniformly bounded cost, and we derive from this the
existence of a strategy for Repairer to win the simulation game over GR,T .

The general idea is to derive from the sequence of moves taken by Generator a
corresponding sequence of longer and longer prefixes u1, u2, . . . of the serialization
of some tree t ∈ L (R); then one considers the repairs v1, v2, . . . produced by the
transducer Z on the prefixes u1, u2, . . . and extracts from the corresponding partial
runs in T the responses of Repairer to Generator moves. We will see below how we
can guarantee the existence of valid responses of Repairer during the entire play.
Moreover, we will see that each time the transducer Z parses a certain portion of
the input without performing a costly repair, the corresponding move of Repairer is

trivial, that is, of the form ⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , y⃗ K. Finally, the fact that Z has uniformly
bounded aggregate cost will imply that the constructed strategy of Repairer is
winning.

We organize the proof into three subsections. In Subsection 5.1 we lay down
our assumptions, notations, and a couple of technical lemmas. In Subsection 5.2
we show in detail how to extract from the transducer Z a strategy for Repairer
to win the simulation game over GR,T . In doing so we will consider a simplified
version of the simulation game, where Referee is not allowed to play. This means
that the stacks that define the positions in the arena could be modified only by
Generator or Repairer, and they do not contain any occurrence of the separator
symbol ⊲. Finally, in Subsection 5.3 we argue that the constructed strategy for
Repairer is safe, in the sense that it does not take advantage of the absence of
separators and it correctly mimics the changes to the stacks that are performed
by Referee.

5.1 Preliminary assumptions, notations, and technical lemmas

In order to construct a winning strategy for Repairer, we will look at the repairs
provided by transducer Z on arbitrary long streams. In particular, our construc-
tions will not depend on the function Ω of Z that describes the final output at
the end of a stream. Thus, for simplicity, we assume that the final output Ω(z) is
empty for every state z of Z (if this were not the case, we could simply consider
a new transducer Z ′ that behaves exactly as Z, but has Ω(z) = ε on all states z).
This assumption allows us to conveniently denote by Z(u) the output produced
by Z on a partial input u – in particular, note that Z(u) is a prefix of Z(u′)
whenever u is a prefix of u′.

The general idea of the proof is to consider the states reached1 by R on generic
prefixes u of serialized trees in R. By looking at how the components of these
states change when we prolong the prefixes, we will be able to derive appropriate
sequences of moves of Generator in the simulation game. Similarly, by considering

1 We recall from Section 3.2 that, given a top-down deterministic tree automaton A =

(Σ,Q, δ, q0, F) and a prefix u of the serialization of some tree t ∈ L (A), there exists a unique

state of the form δ○(q0,C) for any context C such that Ĉprefix = u; δ(q0,C) is precisely called
the state reached by A on a prefix u.

Which XML schemas are streaming bounded repairable? 37

the components of the states reached by T on the repaired prefixes Z(u), we will
construct the possible responses of Repairer to Generator’s moves. For this, how-
ever, we will need appropriate pumping arguments on the possible prolongations
of the prefixes u that do not induce a change of component in the automaton R.
Intuitively, for long enough prolongations of u that do not make R quit a certain
component X, we will be able to show that the corresponding states reached by
T stabilize within a single component Y such that L (R ∣ X) ⊆ L (T ∣ Y) (see
Lemma 7 for a formal statement of this property). Thanks to this property, we
will be able to prove that the constructed strategy of Repairer induces plays that
visit only valid positions of the arena GR,T .

We begin by giving a generalized notion of context, which will be used later to
construct a winning strategy for Repairer.

A multi-context with h holes is a tree or a forest C with labels over Σ ⊎ {●}
that contains exactly h occurrences of the hole symbol ●, and these occurrences
are only at the leaves of C having no right siblings. An example of a multi-context
with 3 holes is the forest a(b(c, ●), b, ●) ●. Note that forests and contexts over Σ
are all special cases of multi-contexts, with 0 and 1 holes respectively.

We define the composition of two multi-contexts C and C′ to be the multi-
context C ○C′ obtained from substituting the first occurrence of ● in the preorder
visit of C with C′. We will frequently write compositions of multi-contexts without
using parentheses, assuming that the order of composition is from left to right.
Given two multi-contexts C and C′, we say that C′ extends C if there exists a
series of multi-contexts C1, . . . , Ck such that C′ = C ○ C1 ○ . . . ○ Ck. Note that the
extension relation on multi-contexts is a partial order.

Similar to the serialization of a context, we denote by Ĉprefix the prefix of the
serialization of a multi-context C that ends immediately before the first occurrence
of the symbol ● (clearly, if there is no such an occurrence, then Ĉprefix = Ĉ). It is
easy to see that if C′ extends C, then Ĉprefix is a prefix of Ĉ′prefix.

We will also need to reason on computations of automata on portions of trees,
precisely, on multi-contexts and on prefixes of serializations. Given a top-down de-
terministic tree automaton A = (Σ,Q, δ, q0, F), we first extend the function δ○

representing the behaviour of A from contexts to multi-contexts. Formally, we let
δ○ be the partial function that maps a state q and a multi-context C with h holes
to the unique tuple of states δ○(q,C) = (q1, . . . , qh) whenever there exists a ‘run’
ρ ∶ nodes+(C)→ Q satisfying:

– ρ(⃗ı) = q, where ı⃗ is the leftmost root of ρ,
– ρ(⃗ıj) = qj for all j = 1, . . . , h, where ı⃗j is the node with the j-th occurrence of

the hole symbol ● following the preorder visit of C,
– δ(ρ(⃗ı ⋅ j), C(⃗ı ⋅ j)) = (ρ(⃗ı ⋅ j ⋅ 1), ρ(⃗ı ⋅ (j + 1))) for all nodes ı⃗ ⋅ j ∈ nodes(C).

By a slight abuse of notation, we further extend the function δ○ to prefixes of
serialized trees, as follows. Given a prefix u of a serialized tree t̂, we factorize u

uniquely as a1 ⋅ t̂1 ⋅ a2 ⋅ t̂2 ⋅ . . . ah ⋅ t̂h, where a1, a2, . . . , ah are all the unmatched
opening tags in u and t̂1, t̂2, . . . , t̂h are the well-matched infixes between them,
which represent, respectively, the forests t1, t2, . . . , th. We then define δ○(q, u) =

38 Pierre Bourhis et al.

δ○(q,Cu), where Cu is the multi-context with h holes associated with u:

Cu = a1

t1 a2

t2 ah

th ●

●

●

Intuitively, δ○(q, u) gives the stack of states associated with the h holes in a run
of A on Cu that starts from q.

Finally, it will be convenient to use a short notation for the component of
a state in an automaton. Precisely, given a state q of A, we denote with [q]A
(or simply with [q], when the automaton A is understood from the context) the
strongly connected component of A that contains the state q. We then extend this
notation from states to stack of states q1 ⋅ . . . ⋅qn ∈ Q+, namely, we let [q1 ⋅ . . . ⋅qn]A =
[q1]A ⋅ . . . ⋅ [qn]A.

We now give a couple of technical lemmas that will be extensively used in
the rest of the section. For this, we fix two top-down determinsitic tree automata
R = (Σ,P, δ, p0, F) and T = (∆,Q, γ, q0,G) recognizing the restriction and target
languages, respectively.

Given a state p of R and a context C, we say that C is cyclic on state p if we
have δ○(p,C) = p – in particular, C is realizable within the component of p.

The first lemma shows that one can associate with each component X of R
a suitable context DX that is cyclic on some state p ∈ X – hence DX can be
‘pumped’ inside the language L (R ∣ X) – and such that, for every component
Y of T , DX ∈ L (T ∣ Y) if and only if L (R ∣ X) ⊆ L (T ∣ Y). We call any such
context DX a fingerprint context for the component X. We remark that this notion
of fingerprint context was originally introduced in [18].

Lemma 6 Every component X of R has a fingerprint context, namely, for each

X ∈ SCC(R), there exists a state p ∈ X and a context DX ∈ L (R ∣ X) such that

δ○(p,DX) = p and, for every Y ∈ SCC(T),

L (R ∣ X) ⊆ L (T ∣ Y) if and only if DX ∈ L (T ∣ Y).

Moreover, if X is non-horizontal, then there exists such a context DX that is vertical,

that is, where the hole is not a root.

Proof. Let X be a component of R and let Y1, . . . , Ym be all the components of T .
We prove by induction on i = 0, . . . ,m that there is a cyclic context Di ∈ L (R ∣ X)
such that:

∀1 ≤ j ≤ i. L (R ∣ X) ⊆ L (T ∣ Yj) if and only if Di ∈ L (T ∣ Yj) (⋆)

The first claim of the lemma will follow from (⋆) when we let DX = Dm (to satisfy
the second claim when X is non-horizontal, it will be sufficient to compose Dm
with a cyclic vertical context).

The base case of the induction is i = 0, where we simply let D0 be the trivial
context ●.

Which XML schemas are streaming bounded repairable? 39

For the inductive step, let 0 ≤ i <m and suppose that there exists a context Di
that satisfies (⋆). We construct the next context Di+1 that satisfies (⋆). To do so,
we distinguish two cases, depending on whether L (R ∣ X) ⊆ L (T ∣ Yi+1) or not. If
L (R ∣ X) ⊆ L (T ∣ Yi+1), then we define Di+1 = Di. In this way we easily see that
the context Di+1 satisfies (⋆). Otherwise, if L (R ∣ X) ⊈ L (T ∣ Yi+1), we choose a
context C ∈ L (R ∣ X) ∖L (T ∣ Yi+1). Since Di is cyclic and C ∈ L (R ∣ X), there
exist some states p, p′, p′′ ∈ X such that δ(p,Di) = p and δ(p′, C) = p′′. Moreover,
since all states p, p′, p′′ belong to the same component, there exist some contexts
C′, C′′ ∈ L (R ∣ X) such that δ(p,C′) = p′ and δ(p′′, C′′) = p. We then define
Di+1 = Di ○C′ ○C ○C′′ and observe that Di+1 is a cyclic context:

δ
○(p,Di+1) = δ

○(p,C′ ○C ○C′′) = δ
○(p′, C ○C′′) = δ

○(p′′, C′′) = p.

In particular Di+1 ∈ L (R ∣ X). It is also easy to see that Di+1 does not belong
to L (T ∣ Yi+1). Indeed, if Di+1 ∈ L (T ∣ Yi+1), then there would exist states
q, q′ ∈ Yi+1 such that δ(q,C) = q′; this however would contradict the fact that
C ∉ L (T ∣ Yi+1). Finally, we know from the inductive hypothesis that, for every
1 ≤ j ≤ i, if Di+1 ∈ L (T ∣ Yj), then Di ∈ L (T ∣ Yj) and L (R ∣ X) ⊆ L (T ∣ Yj)
follow. The converse implication holds in a similar way. We conclude that for every
1 ≤ j ≤ i + 1, L (R ∣ X) ⊆ L (T ∣ Yj) if and only if Di+1 ∈ L (T ∣ Yj). This proves
the inductive step for (⋆).

It only remains to observe that, if X is a non-horizontal component, then for
every p ∈ X, there exists a vertical context C′′′ such that δ○(p,C′′′) = p. In this
case we can redefine the fingerprint context as DX = Dm ○C′′′, in such a way that
the property L (R ∣ X) ⊆ L (T ∣ Y) if and only if DX ∈ L (T ∣ Y) still holds for all
Y ∈ SCC(T). ⊓⊔

The lemma below roughly states that, if one repeats a cyclic context D a suf-
ficient number of times, then the states of the target automaton that are reached
on the corresponding outputs produced by transducer Z will eventually stabilize
within a single component Y and the language of contexts L (T ∣ Y) will nec-
essarily contain the cyclic context D. It is worth noticing that a similar lemma
appeared in [6] showing that streaming repair strategies of strings ‘stabilize’ inside
components of finite automata. For the following statement, we recall that δ (resp.
γ) denotes the transition function of R (resp. T), p0 (resp. q0) denotes the initial
state of R (resp. T), and Z is a transducer with uniformly bounded aggregate cost
and empty final output function (in particular, this implies that Z(u) is a prefix
of Z(u′) whenever u is a prefix of u′).

Lemma 7 Let C be a multi-context with any number h ≥ 1 of holes such that

δ○(p0, C) = (p1, . . . , ph) (in particular, this means that Ĉprefix is a prefix of the se-

rialization of some tree in the restriction language). Moreover, let D be a cyclic context

such that δ○(p1,D) = p1. There exist a number n0 ∈ N and a component Y of T such

that, for all natural numbers m and n, with 0 ≤m ≤ n:

1. Z(Ĉprefix ⋅ D̂n0+n
prefix) = Z(Ĉprefix ⋅ D̂n0

prefix) ⋅ D̂nprefix
,

2. Z(Ĉprefix ⋅D̂n0+n
prefix ⋅ t̂ ⋅D̂n0+m

suffix) = Z(Ĉprefix ⋅D̂n0+n
prefix ⋅ t̂ ⋅D̂n0

suffix) ⋅D̂msuffix

for all trees or forests t accepted by R starting from state p1,

3. top(γ○(q0, vn0+n)) ∈ Y and D ∈ L (T ∣ Y), where vn0+n = Z(Ĉprefix ⋅ D̂n0+n
prefix).

40 Pierre Bourhis et al.

Proof. Let C, p1, . . . , ph,D be as in the statement of the lemma. We define un =
Ĉprefix ⋅ D̂nprefix

, for all n ∈ N, and we think of the words u0, u1, . . . as a series of
prefixes provided as input to the transducer Z. From the fact that Z is a tree edit
transducer with aggregate cost uniformly bounded by a constant cmax, we know
that the value cost(un,Z) stabilizes for a sufficiently large n, that is, there is a
constant n0 such that, for all n ∈ N, cost(un0+n,Z) = cost(un0 ,Z) ≤ cmax. This
immediately implies the first property stated in the lemma, that is, for all n ∈ N:

Z(Ĉprefix ⋅ D̂n0+n
prefix) = Z(Ĉprefix ⋅ D̂n0

prefix) ⋅ D̂nprefix
(1.)

Similarly, we recall from the hypothesis of the lemma that δ○(p0, C) = (p1, . . . , ph)
and δ○(p1,D) = p1. Since un = Ĉprefix ⋅ D̂nprefix

, this implies that δ○(p0, un) =
(p1, . . . , ph). We fix an arbitrary tree or forest t that is accepted by R starting from

state p1, and we consider the series of inputs for Z of the form u′n,m = Ĉprefix⋅D̂nprefix⋅
t̂ ⋅ D̂msuffix

, with m ≤ n (note that δ○(p0, u
′
n,m) = (p1, . . . , ph) holds as well). If we

let m increase, we derive from the fact that Z has aggregate cost at most cmax the
existence of another constant n1 such that cost(u′n,n1+m,Z) = cost(u′n,n1

,Z) ≤ cmax

for all m ≤ n. Without loss of generality, we can further assume that n0 was chosen
large enough so as to dominate n1, that is, n0 ≥ n1. In this way we prove that the
second property holds for all m ≤ n ∈ N:

Z(Ĉprefix ⋅ D̂n0+n
prefix ⋅ t̂ ⋅ D̂n0+m

suffix) = Z(Ĉprefix ⋅ D̂n0+n
prefix ⋅ t̂ ⋅ D̂n0

suffix) ⋅ D̂msuffix

(2.)

Next, we consider the sequence of components of T of the form Yn = [qn], with

qn = top(γ○(q0, vn)) and vn = Z(Ĉprefix ⋅ D̂nprefix), for all n > 0. By construction,
we have that the sequence Y1, Y2, . . . forms a chain in the directed acyclic graph
of the components of T , where the accessibility relation is lifted from states to
components in the natural way. Since there are only finitely many components,
we know that the sequence Y1, Y2, . . . is ultimately constant, that is, we have Yn2 =
Yn2+1 = . . . = Y for a sufficiently large constant n2 and a well defined component
Y of T . Again, we assume without loss of generality that n0 ≥ n2 and we prove in
this way that:

top(γ○(q0, vn0+n)) ∈ Y for all n ∈ N.

It remains to prove that the context D is realizable within the component Y .
For this, we consider some outputs produced by Z, precisely, the words of the

form vn0+n = Z(Ĉprefix ⋅ D̂n0+n
prefix), where n = 0 or n = 1, and the words of the

form wn0+n = Z(Ĉprefix ⋅ D̂n0+1
prefix ⋅ t̂ ⋅ D̂n0+n

suffix), where n = 0 or n = 1 and
where t is a generic tree accepted by R starting from state p1 (note that p1 =
top(δ○(p0, vn0+n))). We recall from the properties (1.) and (2.) above that vn0+1 =
vn0 ⋅ D̂prefix and wn0+1 = wn0 ⋅ D̂suffix. We then consider the corresponding stacks
of states reached by T on the above words, that is, q⃗n0+n = γ○(q0, vn0+n) and
r⃗n0+n = γ○(q0, wn0+n), for both n = 0 and n = 1. For the sake of brevity, we let
q⃗ = tail(q⃗n0). From the property (3.) above, we know that the states q = top(q⃗n0)

Which XML schemas are streaming bounded repairable? 41

and q′ = top(q⃗n0+1) at the top of the two stacks q⃗n0 and q⃗n0+1 belong to the
component Y . Moreover, it follows from the various definitions that:

q⃗n0 = top(q⃗n0) ⋅ tail(q⃗n0) = q ⋅ q⃗

q⃗n0+1 = γ○(q0, vn0+1) = γ○(q0,Z(Ĉprefix ⋅ D̂n0+1
prefix))

= γ○(q0,Z(Ĉprefix ⋅ D̂n0
prefix) ⋅ D̂prefix) = γ○(q⃗n0 , D̂

prefix)
= q′ ⋅ tail(γ○(q⃗n0 , D̂

prefix)) = q′ ⋅ tail(γ○(q, D̂prefix)) ⋅ q⃗

r⃗n0+1 = γ○(q0, wn0+1) = γ○(q0,Z(Ĉprefix ⋅ D̂n0+1
prefix ⋅ t̂ ⋅ D̂n0+1

suffix))
= tail(γ○(q0,Z(Ĉprefix))) = tail(q⃗n0) = q⃗

r⃗n0 = γ○(q0, wn0) = γ○(q0,Z(Ĉprefix ⋅ D̂n0+1
prefix ⋅ t̂ ⋅ D̂n0

suffix))
= tail(γ○(q0,Z(Ĉprefix ⋅ D̂n0

prefix))) = tail(γ○(q⃗n0 , D̂
prefix))

= tail(γ○(q, D̂prefix)) ⋅ q⃗ .

This proves that γ○(q,D) = q′ and hence

top(γ○(q0, vn0+n)) ∈ Y and D ∈ L (T ∣ Y) for all n ∈ N. (3.)

⊓⊔

5.2 Construction of a strategy for Repairer

We are now ready to enter the details of the proof. Recall that R = (Σ,P, δ, p0, F)
and T = (∆,Q, γ, q0,G) are two top-down deterministic tree automata recognizing
the restriction and target languages, and that Z is a tree edit transducer imple-
menting a streaming repair strategy from L (R) to L (T) with aggregate costs
cost(t̂,Z) uniformly bounded by a constant cmax, for all trees t ∈ L (R).

The strategy of Repairer will be a partial function that maps plays of the form

⟪ x⃗0 , y⃗0⟫ Rep↦ J x⃗0 , y⃗1 K Gen↦ . . . Rep↦ J x⃗n−1 , y⃗n K Gen↦ ⟪ x⃗n , y⃗n⟫

to the next move ⟪ x⃗n , y⃗n⟫ Rep↦ J x⃗n , y⃗n+1 K that has to be chosen by Repairer in
order to win the game. The definitions will exploit an induction on the length n of
the play, starting from n = 0. At the same time, we will associate with the above
plays some corresponding sequences of multi-contexts E0 = ●, E1, . . ., En+1 over Σ
that satisfy the following properties, for all 1 ≤ i ≤ n + 1:

1. Ei is an extension of Ei−1,
2. Ei has the same number of holes as the height hi−1 of the stack x⃗i−1,
3. the tuple of states δ○(p0, Ei) = (p1, . . . , phi−1) is well defined and the lifting to

the sequence of components [p1 ⋅ . . . ⋅ phi−1]R coincides with the stack x⃗i−1,

4. if i ≤ n and vi = Z(Êprefix
i) is the output produced by Z on input Êprefix

i , then
γ○(q0, vi) is well defined and [γ○(q0, vi)]T coincides with the stack y⃗i.

For the base case n = 0, we know that x⃗0 is the singleton stack that consists
of the component X0 = [p0]R of the initial state of R. We apply Lemma 6 to
obtain a fingerprint context DX0

∈ L (R ∣ X0) and a state p ∈ X0 such that (i)
δ○(p,DX0

) = p and (ii) for every Y ∈ SCC(T), L (R ∣ X0) ⊆ L (T ∣ Y) if and only

42 Pierre Bourhis et al.

if DX0
∈ L (T ∣ Y). Since p and p0 are in the same component X0, we know that

there is a context C that connects the two states, namely, δ○(p0, C) = p. We can
apply Lemma 7 to C, viewed as a multi-context with 1 hole, and DX0

, viewed as
cyclic context over the state p = δ○(p0, C); we obtain in this way a constant n0 and
a component Y of T such that, for all n ∈ N:

– Z(Ĉprefix ⋅ D̂n0+n
X0

prefix
) = Z(Ĉprefix ⋅ D̂n0

X0

prefix
) ⋅ D̂nX0

prefix
,

– top(γ○(q0, vn0+n)) ∈ Y , where vn0+n = Z(Ĉprefix ⋅ D̂n0+n
X0

prefix
),

– DX0
∈ L (T ∣ Y).

We can now define the multi-context E1 and the first move of Repairer:

E1 =def E0 ○C ○Dn0+1
X0

and ⟪ x⃗0 , y⃗0⟫ Rep↦ J x⃗0 , y⃗1 K

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y⃗0 = [q0]T
y⃗1 = [γ○(q0, v1)]T

v1 = Z(Êprefix
1).

By construction we have that the (multi-)context E1 satisfies all the desired prop-
erties, that is:

1. E1 is an extension of E0 = ●,
2. E1 has 1 hole, exactly as the height of the stack x⃗0 = X0,
3. the tuple (p) = δ○(p0, E1) is well defined and, since C ○DX0

∈ L (R ∣p0 X0), we
have [p]R = [p0]R = x⃗0,

4. y⃗1 = [γ○(q0, v1)]T , where v1 = Z(Êprefix
1).

It only remains to show that ⟪ x⃗0 , y⃗0⟫ Rep↦ J x⃗0 , y⃗1 K is indeed a valid move of
Repairer inside the arena GR,T . Clearly, the definition of this move respects the

prefix-rewriting relation T↦∗ associated with the target automaton T . Moreover,
the containment L (R ∣ X0) ⊆ L (T ∣ top(y⃗1)) holds thanks to the following facts:
(i) top(y⃗1) = [top(γ○(q0, v1))]

T
= Y , (ii) DX0

∈ L (T ∣ Y), and (iii) DX0
is a

fingerprint context for X0.

We now focus on the inductive argument of the construction. We suppose that
n > 0 and that Generator has just moved from a position J x⃗n−1 , y⃗n K to a position
⟪ x⃗n , y⃗n⟫ of the arena. Moreover, we assume that a corresponding sequence of
contexts E1, . . . , En has been already defined so as to satisfy the desired properties.
In particular, we have x⃗n−1 = [δ○(p0, En)]

R
and y⃗n = [γ○(q0,Z(Êprefix

n))]
T

. To
define the multi-context En+1 we distinguish two cases depending on whether the

last move J x⃗n−1 , y⃗n K Gen↦ ⟪ x⃗n , y⃗n⟫ of Generator is a push-and-swap operation or
a pop operation:

1. Suppose that the last move of Generator is a push-and-swap operation that
replaces the stack x⃗n−1 = X ⋅ x⃗ with the stack x⃗n = X1 X2 ⋅ x⃗, where X = [p],
X1 = [p1], X2 = [p2] and δ(p, a) = (p1, p2). From the inductive hypothesis we
know that x⃗n−1 coincides with the lifting [δ○(p0, En)]

R
, and hence the state

p′ = top(δ○(p0, En)) belongs to X, exactly as p. We can thus find a context C
such that δ○(p′, C) = p. Moreover, Lemma 6 gives us a fingerprint context DX1

Which XML schemas are streaming bounded repairable? 43

for the component X1 and another state p′1 ∈ X1 such that δ(p′1,DX1
) = p′1.

Again, since p1, p
′
1 ∈ X1, we can find a third context C′ such that δ○(p1, C

′) = p′1.
Next, we consider the composition of the multi-context En with the multi-
context C ○ a(C′, ●) (note that the latter multi-context has two holes). From
the previous definitions we obtain:

δ○(p0, En ○C ○ a(C′, ●)) = δ○(p′, C ○ a(C′, ●)) ⋅ tail(δ○(p0, En))
= δ○(p, a(C′, ●)) ⋅ tail(δ○(p0, En))
= δ○(p1, C

′) ⋅ p2 ⋅ tail(δ○(p0, En))
= p′1 ⋅ p2 ⋅ tail(δ○(p0, En)).

We also let n0 be the number obtained from applying Lemma 7 to the multi-
context En ○C ○ a(C′, ●) and to the cyclic context DX1

.
Finally, we can define the multi-context En+1 for the inductive step:

En+1 =def
En ○C ○ a(C′, ●) ○Dn0+1

X1
.

Clearly, the multi-context En+1 is an extension of En and, due to the insertion
of a(C′, ●), it has one hole more than the multi-context En. In particular, the
multi-context En+1 has exactly as many holes as the height of the stack x⃗n.
Moreover, using the previous equalities, we derive:

δ○(p0, En+1) = δ○(p0, En ○C ○ a(C′, ●) ○Dn0+1
X1

)
= δ○(p′1, Dn0+1

X1
) ⋅ p2 ⋅ tail(δ○(p0, En))

= p′1 ⋅ p2 ⋅ tail(δ○(p0, En)).

From x⃗n−1 = [δ○(p0, En)]
R

, x⃗n = X1 X2 ⋅ tail(x⃗n−1), p′1 ∈ X1, and p2 ∈ X2, it

then follows that [δ○(p0, En+1)]
R
= x⃗n.

It now remains to define the corresponding move of Repairer. As usual, this
move is extracted from the repair computed by the transducer Z on input
Ê

prefix
n+1 . More precisely, we define the next move of Repairer to be

⟪ x⃗n , y⃗n⟫ Rep↦ J x⃗n , y⃗n+1 K

where y⃗n+1 = [γ○(q0, vn+1)]
T

and vn+1 = Z(Êprefix
n+1). The fact that the above

move satisfies the containment L (R ∣ top(x⃗n)) ⊆ L (T ∣ top(y⃗n+1)) follows
from the definition of n0 (Lemma 7) and, in particular, from the fact that DX1

is a fingerprint context for X1 = top(x⃗n) and is realizable within the component
Y = top(y⃗n+1) of T (Lemma 6).

2. We now consider the case where the last move of Generator is a pop op-
eration that removes the top component from the stack x⃗n−1, thus reach-
ing the stack x⃗n = tail(x⃗n−1). We know from the inductive hypothesis that
δ○(p0, En) = (p1, p2, . . . , phn−1) is well defined and its lifting [p1 p2 ⋅ . . . ⋅ phn−1]R
coincides with x⃗n−1. SinceR is trimmed, there exists a tree t that is accepted by
R starting from state p1. In particular, we have δ○(p0, En ○ t) = (p2, . . . , phn−1)
and [p2, . . . , phn−1]R = tail(x⃗n−1) = x⃗n.
Next, we denote by X the component at the top of the stack x⃗n and we note
that p2 ∈ X. Using Lemma 6 we find a fingerprint context DX for X and we let
p′2 be a state in X such that δ(p′2,DX) = p′2. Moreover, we let C be any context

44 Pierre Bourhis et al.

that connects p2 to p′2, namely, such that δ(p2, C) = p′2. We then consider the
multi-context En ○ t ○C and we verify that

δ
○(p0, En ○ t ○C) = p

′
2 p3 . . . phn−1 .

Moreover, we let n0 be the constant obtained from applying Lemma 7 to the
multi-context En ○ t ○C and to the cyclic context DX .
We can finally define the multi-context and the move of Repairer for the in-
ductive step as follows:

En+1 =def En ○ t ○C ○Dn0

X and ⟪ x⃗n , y⃗n⟫ Rep↦ J x⃗n , y⃗n+1 K

where

⎧⎪⎪⎨⎪⎪⎩

y⃗n+1 = [γ○(q0, vn+1)]T

vn+1 = Z(Êprefix
n+1).

Using exactly the same arguments as in the previous case, one can verify that
the above definitions satisfy the inductive hypothesis, in particular, the fact
that [δ○(p0, En+1)]

R
= x⃗n and L (R ∣ top(x⃗n)) ⊆ L (T ∣ top(y⃗n+1)).

Summing up, from the existence of a transducer Z that repairs L (R) into L (T)
with bounded aggregate-cost, we derived the existence of a strategy for Repairer
to win the simulation game over the arena GR,T . Note that, for the moment, we
overlooked the effect of the moves of the third player Referee.

In the following section we will give detailed arguments towards proving that
Repairer’s strategy is correct also with respect to presence of separator symbols.
For this, it is convenient to summarize below the key properties that are achieved
by Repairer’s strategy (one can easily verify these properties in the above con-
structions).

Claim 3. For every position ⟪ x⃗ , y⃗⟫ that is reached during a play induced by the
defined strategy of Repairer, there is a multi-context E, an extension E′ of E, and
a fingerprint context DX for X, where X = top(x⃗), such that:

– [δ○(p0, E)]
R
= x⃗

(recall that δ○(p0, E) is a sequence of states of the same length as the number
of holes in E and [δ○(p0, E)]

R
is the lifting of this sequence to the components

of R),
– the states p = top(δ○(p0, E)) and p′ = top(δ○(p0, E

′)) belong to the same com-
ponent X = top(x⃗),

– DX is cyclic on the state p′ = top(δ○(p0, E
′)) and it is vertical whenever X is

non-horizontal.

In addition, if we let un = Ê′prefix ⋅ (D̂prefix
X)n and y⃗n = [γ○(q0,Z(un))]

T
, for all

n ∈ N, then the move induced by Repairer’s strategy is of the form

⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , y⃗n0+1 K

where n0 is a sufficiently large number such that, for some component Y of T and
for all n ∈ N, top(y⃗n0+n) = Y and DX ∈ L (T ∣ Y).

Which XML schemas are streaming bounded repairable? 45

5.3 Correctness of Repairer strategy

In the previous part we constructed from a given transducer T a corresponding
strategy for Repairer. For the sake of simplicity, we did so without considering
the presence of non-horizontal components in R and, specifically, the role of the
separator symbols introduced by Referee. We dedicate the last part of this section
to explain why the strategy of Repairer can be considered correct even in the pres-
ence of non-horizontal components. The argument is not straightforward, since it
depends on the interaction between the moves of Generator, Repairer, and Referee
and on the interleaving of separators and components induced by these moves. In
fact, what we will prove below is the correctness of Repairer strategy with respect
to a modified, but equivalent, version of the game. Intuitively, this new game is
obtained by relaxing the rules for inserting separator symbols in the stack con-
trolled by Repairer. Since we would like to work with reachability games between
two players (recall that Referee had no choice in the original game and was intro-
duced only to ease the presentation), we will assume that the additional degree of
freedom can be exploited by Repairer. In particular, for Repairer it will be at least
as easy to win the modified game as to win the original game. Conversely, we will
show that from a strategy of Repairer that is winning in the modified game, one
can derive a similar winning strategy of Repairer in the original game, which is of
course correct with respect to the more stringent rules.

We begin by presenting the modified game and by proving that it has the same
winner as the original game. For this we consider sequences of push-and-swap and

pop operations that satisfy the basic prefix-rewriting system T↦ and that can
be associated with a single move of Repairer. Let S be any such sequence, say

y⃗1
T↦ y⃗2

T↦ . . . T↦ y⃗`. We say that a position i is repeatable in S if top(y⃗i) = top(y⃗`) and
tail(y⃗i) is a suffix of tail(y⃗j), for all positions j with i ≤ j ≤ `. Intuitively, the effect
of the series of rewriting steps that follow a repeatable position in the sequence S
is to replace the topmost element with a non-empty block of components that has
the same element at the top. Note that every sequence S has a repeatable position
(possibly the last one), so we can denote by r(S) the first repeatable position in S.

Now, suppose that ⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , y⃗′ K is a move of Repairer, where x⃗ has a non-
horizontal component at the top that is not immediately preceded by a separator,

and let S ∶ y⃗ = y⃗1
T↦ y⃗2

T↦ . . . T↦ y⃗` = y⃗′ be the sequence of basic rewriting
steps associated with this move. Recall that in the original game Referee would
insert a separator symbol just below the top elements of the two stacks x⃗ and y⃗′.
In the modified game, instead, we allow the separator symbol to be inserted at any
position between the top ∣y⃗′∣− ∣y⃗r(S)∣+ 1 elements of y⃗′. Furthermore, this position
can be chosen by Repairer. We denote by G′R,T the arena of the game modified as
we just described.

Below, we prove that the two versions of the game are equivalent, namely, they
admit the same winner.

Lemma 8 Repairers wins the game over GR,T if and only if he wins the modified

game over G′R,T .

Proof. One direction is straightforward: if Repairer wins the game over GR,T , then
he can also win the game over G′R,T by choosing to insert the separator symbol
always below the top element of his stack.

46 Pierre Bourhis et al.

For the converse direction, we consider pairs of moves over the modified arena
G′R,T where a new separator is inserted, namely, moves of the form

⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , Y1 . . . Yh K Ref↦ Jtop(x⃗) ⋅ ⊲ ⋅ tail(x⃗) , (Y1 . . . Yi) ⋅ ⊲ ⋅ (Yi+1 . . . Yk . . . Yh)K
(†)

where 1 ≤ i < k ≤ h, tail(y⃗r(S)) = Yk . . . Yh, and S is a sequence of basic rewriting
steps that transform y⃗ into Y1 . . . Yh (note that the separator has been correctly
inserted above the suffix tail(y⃗r(S))).

The general idea is to show that, starting from moves of the above form,
Repairer can simulate any strategy for the modified game with a strategy for the
original game. Doing so, however, might be problematic for the following reason.
During subsequent rounds in the modified game, Repairer may choose to perform
a series of pop operations and reach a stack with a top stack element among
Y2, . . . , Yi. On the other hand, in the original version of the game, the elements
Y2, . . . , Yi occur under a separator symbol and thus cannot be easily ‘accessed’ by
Repairer. Formally, we aim at proving that, whenever Repairer can induce a play
in the modified game that uses the subsequent moves in (†) and that reaches later
a position of the form

⟪ x⃗′ ⋅ ⊲ ⋅ tail(x⃗) , (Yj . . . Yi) ⋅ ⊲ ⋅ (Yi+1 . . . Yk . . . Yh)⟫,

with 1 ≤ j ≤ i, then, using a similar strategy, he can induce a play in the original
game that uses the subsequent moves

⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , Y1 . . . Yh K Ref↦ Jtop(x⃗) ⋅ ⊲ ⋅ tail(x⃗) , Y1 ⋅ ⊲ ⋅ (Y2 . . . Yi Yi+1 . . . Yk . . . Yh K

(‡)

and that reaches a position of the form

⟪ x⃗′ ⋅ ⊲ ⋅ tail(x⃗) , (Yj . . . Yi) ⋅ ⊲ ⋅ (Y2 . . . Yi ⋅ Yi+1 . . . Yk . . . Yh)⟫,

We will see later how this implies that if Repairer wins the modified game over
G′R,T , then he can also win the original game over GR,T .

We begin by observing an important property of the portion Y1 . . . Yi of
the stack that lies above the separator symbol in (†). Let S be a sequence

y⃗ = y⃗1
T↦ y⃗2

T↦ . . . T↦ y⃗` = Y1 . . . Yh of basic rewriting steps that can be

associated with the move ⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , Y1 . . . Yh K. Since r(S) is a repeatable po-
sition in S, we know that top(y⃗r(S)) = Y1 and that tail(y⃗r(S)) = Yk . . . Yh is a suffix
of Y2 . . . Yh. Note that y⃗r(S) = Y1 Yk . . . Yh, and hence the sequence of rewriting
steps that transform y⃗r(S) into Y1 . . . Yk can be pumped an arbitrary number of
times, e.g.

Y1Yk . . . Yh
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= y⃗r(S)

T↦∗ (Y1 . . . Yk−1) ⋅ (Yk . . . Yh) T↦∗ (Y1 . . . Yk−1) ⋅ (Y2 . . . Yk−1) ⋅ (Yk . . . Yh).

The above property can be exploited by Repairer when playing in the original
version of the game, as follows. Any series of push-and-swap operations performed
in the modified game can be immediately executed in the original game, since the
top stack element is preserved. When a series of pop operations is performed in

Which XML schemas are streaming bounded repairable? 47

the modified game, Repairer can simulate it in the original game by first pushing a
new copy of the block Y1 . . . Yk−1 (using the transformation associated with y⃗r(S))
and then applying a series of pop operations that reveal the correct component,
that is:

Y1 ⋅ ⊲ ⋅ (Y2 . . . Yh) T↦∗ (Y1 . . . Yk−1) ⋅ ⊲ ⋅ (Y2 . . . Yh) T↦∗ (Yj . . . Yk−1) ⋅ ⊲ ⋅ (Y2 . . . Yh)

for any j, with 2 ≤ j ≤ i. This means that, whenever Repairer can reach, in the mod-
ified game, a position of the form ⟪ x⃗′ ⋅ ⊲ ⋅ tail(x⃗) , (Yj . . . Yi) ⋅ ⊲ ⋅ (Yi+1 . . . Yk . . . Yh)⟫,
then in a similar way he can reach, in the original game, a position of the form
⟪ x⃗′ ⋅ ⊲ ⋅ tail(x⃗) , (Yj . . . Yi) ⋅ ⊲ ⋅ (Y2 . . . Yi ⋅ Yi+1 . . . Yk . . . Yh)⟫.

To conclude, we observe that the part of the stack under the separator that is
reached in the original game (i.e. (Y2 . . . Yi ⋅ Yi+1 . . . Yk . . . Yh)) contains as a suffix
the part of the stack under the separator that is reached in the modified game (i.e.
(Yi+1 . . . Yk . . . Yh)). Therefore, if at any moment Referee removes the separator
symbols from the stacks, Repairer can immediately reach in the original game
the same position that was reached in the modified game. Moreover, all the above
arguments carry over in a straightforward way when there are multiple occurrences
of separator symbols. This shows that if Repairer wins the modified game, then
he also wins the original game. ⊓⊔

We now turn to proving that the strategy of Repairer that we constructed from
the transducer Z is correct for the modified game (this will imply the existence of
a correct and winning strategy for Repairer in the original game).

Consider a generic position ⟪ x⃗ , y⃗⟫ owned by Repairer. We will make use of
the notation and the key properties stated in Claim 3. In particular, we fix the
component X (= top(x⃗)), the multi-contexts E and E′ (such that E′ extends E,
[δ○(p0, E)]

R
= x⃗, and top(δ○(p0, E

′)) ∈ X), and the fingerprint context DX for X

(which is cyclic on top(δ○(p0, E
′))). We know that the move induced by Repairer’s

strategy is of the form

⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , y⃗n0+1 K

where y⃗n = [γ○(q0,Z(un))]
T

, un = Ê′prefix ⋅ (D̂prefix
X)n, and n0 is a sufficiently large

number such that, for some component Y of T and for all n ∈ N, top(y⃗n0+n) = Y
and DX ∈ L (T ∣ Y). Now, we apply Lemma 7 to derive

y⃗n0+1 = [γ○(q0,Z(un0+1))]
T

= [γ○(q0,Z(Ê′prefix ⋅ (D̂prefix
X)n0+1))]

T

= [γ○(q0,Z(Ê′prefix ⋅ (D̂prefix
X)n0) ⋅ D̂prefix

X)]
T

= y⃗′′ ⋅ tail(y⃗n0)

for some non-empty y⃗′′. This means that the stack y⃗n0 occurs at a repeat-

able position in the sequence of basic rewriting steps associated with the move

⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , y⃗n0+1 K:

y⃗ T↦ . . . T↦ y⃗n0
y⃗n0y⃗n0

T↦ . . . T↦ y⃗n0+1 = y⃗
′′ ⋅ tail(y⃗n0).

48 Pierre Bourhis et al.

Therefore, if x⃗ has a non-horizontal component at the top that is not immediately
preceded by a separator, in the modified game Repairer can choose to place the
separator symbol just above the suffix tail(y⃗n0) of y⃗n0+1, as follows:

⟪ x⃗ , y⃗⟫ Rep↦ J x⃗ , y⃗n0+1 K Ref↦ Jtop(x⃗) ⋅ ⊲ ⋅ tail(x⃗) , y⃗′′ ⋅ ⊲ ⋅ tail(y⃗n0)K.

It remains to show that the defined strategy of Repairer never removes com-
ponents that lie under the separator symbol. Consider again a position ⟪ x⃗ , y⃗⟫
owned by Repairer. We recall from Lemma 6 that if the component X = top(x⃗)
is non-horizontal, then the fingerprint context DX is vertical. In particular, the
serialization of DX is a string of the form a ⋅ D̂ ⋅ ā, for some letter a ∈ Σ and
some context D. We consider a generic prolongation of un0+1 of the form un0+1 ⋅ t̂,
where t is a tree or a forest, that is a prefix of a serialized tree in the restriction
language L (R). The corresponding output of the transducer Z is of the form
Z(un0+1 ⋅ t̂) = Z(un0+1) ⋅ w, for some word w ∈ (∆ ⊎ ∆̄)∗. In particular, thanks
to the previous definitions and the properties claimed in the first two items of
Lemma 7, we have:

Z(un0+1 ⋅ t̂ ⋅ D̂suffix
X) = Z(un0 ⋅ D̂prefix

X ⋅ t̂ ⋅ D̂suffix
X)

= Z(un0 ⋅ D̂prefix
X ⋅ t̂) ⋅ D̂suffix

X

= Z(un0 ⋅ D̂prefix
X) ⋅ w ⋅ D̂suffix

X

= Z(un0) ⋅ D̂prefix
X ⋅ w ⋅ D̂suffix

X

= Z(un0) ⋅ a ⋅ D̂prefix ⋅ w ⋅ D̂suffix ⋅ ā.

Moreover, since Z is a tree edit transducer, the infix D̂prefix ⋅w ⋅ D̂suffix between the
opening tag a and the matching closing tag ā is a well-nested word. This means
that tail(y⃗n0) is not only a suffix of y⃗′, but also a suffix of [γ○(q0,Z(un0+1 ⋅ t̂))]

T
.

Finally, since t was chosen arbitrarily, this allows us to conclude that, during any
possible continuation of the game from the position ⟪ x⃗ , y⃗⟫, Repairer will never pop
an element from the suffix tail(y⃗n0) before parsing the closing tag ā that matches
the last letter in un0 ⋅ a, that is, before Generator pops the top element of x⃗.

The above arguments show that the strategy for Repairer that we defined in
the previous subsection induces valid moves in the modified arena G′R,T . Moreover,
this strategy is winning, that is, Repairer can always move. Finally, by Lemma 8
we conclude that Repairer has a similar strategy for winning the original game
over GR,T .

6 Complexity results

In the previous section we gave a game-theoretic characterization of streaming
bounded repairability. The effectiveness of such a characterization, and hence
the decidability of the streaming bounded repairability problem, follows from the
fact that the considered simulation game can be seen as a specific reachability
game [13], whose plays are uniformly bounded in length. More precisely, given a
restriction R and a target T , the plays that could possibly arise over the arena
GR,T have length at most exponential in the number of components of R. This
gives a straightforward alternating exponential-time procedure (i.e. in ExpSpace)

Which XML schemas are streaming bounded repairable? 49

that simulates the plays in order to determine the winner of the game over GR,T ,
and possibly synthesizes a winning strategy. Below, we improve the complexity
result that we just derived to a tight Exp bound.

Theorem 2 The problem of streaming bounded repairability for languages recognized

by top-down deterministic tree automata is in Exp.

Proof. Let R = (Σ,P, δ, p0, F) and T = (∆,Q, γ, q0,G) be two given top-down de-
terministic tree automata recognizing the restriction and target languages.

We already mentioned that the stacks controlled by Generator in the simulation
game over the arena GR,T never exceed in length the number of components of R
– this follows essentially from the fact that prefix-rewriting rules of the form X ⋅
x⃗ R↦ X1X2 ⋅x⃗ are applicable only when X1 ≠ X ≠ X2 and both components X1 and
X2 are accessible from X (i.e. δ(p, a) = (p1, p2) for some p ∈ X, p1 ∈ X1, p2 ∈ X2, and
a ∈ Σ). Unfortunately, an analogous bound on the lengths of the stacks controlled
by Repairer does not hold. Indeed, the prefix-rewriting system associated with
the target automaton can produce arbitrarily long stacks by repeatedly applying

rules of the form Y ⋅ y⃗ T↦ Y Y2 ⋅ y⃗, which insert a new component Y2 below the
top component Y . Since the latter type of rules are essentially the root of our
problem, we give them the name of head recursive rules. Note that rules of the

form Y ⋅ y⃗ T↦ Y1 Y ⋅ y⃗ are not head recursive, since the component Y can be
rewritten only after Y1 is popped. Moreover, since the rewriting operations follow
the accessibility relation between components of T , head recursive rules are the
only ones that can be used to generate stacks of arbitrary height. Thus, to bound
the height of the stacks and be able to efficiently simulate plays, we consider below
an equivalent version of the game that is obtained by modifying the prefix-rewriting
rules associated with T so as to avoid recursion.

We begin by describing the modified prefix-rewriting system obtained from T↦ .
For each component Y of T , we introduce a dummy component Ỹ , recognizing the
empty language of contexts (in particular Ỹ does not cover any component of R).
By a slight abuse of notation, we denote by SCC(T̃) the new set of components,
which includes the original components of T and their dummy copies. We begin
by replacing all rules that are not head recursive and of the form

Y ⋅ y⃗ T↦ Y1 Y2 ⋅ y⃗ and Y ⋅ y⃗ T↦ Y1 Y ⋅ y⃗

where Y1 ≠ Y and Y2 ≠ Y , respectively with the rules

Y ⋅ y⃗ T̃↦ Y1 Ỹ1 Y2 Ỹ2 ⋅ y⃗ and Y ⋅ y⃗ T̃↦ Y1 Ỹ1 Y ⋅ y⃗

In other words, we insert the dummy component Ỹi below each component Yi

produced by a rule in T↦ that is not head recursive. Subsequently, we replace all

head recursive rules in T↦ of the form

Y ⋅ y⃗ T↦ Y Y2 ⋅ y⃗ and Y ⋅ y⃗ T↦ Y Y ⋅ y⃗

where Y2 ≠ Y , respectively with the rules

Ỹ ⋅ y⃗ T̃↦ Y2 Ỹ2 Ỹ ⋅ y⃗. and Ỹ ⋅ y⃗ T̃↦ Y Ỹ ⋅ y⃗.

50 Pierre Bourhis et al.

Finally, we keep the usual pop operations on the components of T and we add
similar operations on their dummy copies:

Ỹ ⋅ y⃗ T̃↦ y⃗.

We denote by T̃↦ the modified prefix-rewriting system, and we denote, as usual,

by T̃↦∗ the reflexive and transitive closure of T̃↦ . We also define the arena G
R,T̃

exactly as in Definition 1, using the rewriting systems R↦ and T̃↦∗ and by letting
the initial position be ⟪X0 , Y0 Ỹ0⟫, where X0 is the component of the initial state
of R, Y0 is the component of the initial state of T , and Ỹ0 is the dummy copy of
Y0.

We observe that T̃↦ does not contain head recursive rules, that is, rules of the

form Y ⋅ y⃗ T↦ Y Y2 ⋅ y⃗. More generally, one can easily verify that Y T̃↦∗ y⃗′ ⋅ Y ⋅ y⃗′′
implies y⃗′′ = ε, namely, whenever a component Y is rewritten into a new stack y⃗,

using possibly several steps satisfying T̃↦ , then Y can appear only in the rightmost
position of y⃗. Thanks to the absence of head recursive rules, we can easily see that

the stacks derived from Y0 Ỹ0 using T̃↦∗ have length at most linear in the size
of SCC(T̃). We will see later how this helps to derive an alternating polynomial
space algorithm that solves the streaming bounded repairability problem.

Below, we prove that each of the two prefix-rewriting systems T↦ and T̃↦
can simulate the other when they start from pairs of stacks of the form Y and
Y Ỹ , respectively. The notion of simulation is formally captured by the relation
⪯n, that we define below and that is similar to standard definitions in the literature
of verification and model checking problems [3].

Definition 6 Let Y and Z be two finite sets (e.g. sets of components), let ≈ be

a relation over Y × Z, and let Y↦ and Z↦ be two prefix-rewriting systems over

stacks in Y∗ and in Z∗, respectively. We say that Y↦ is ≈-simulated by Z↦ up to

n-steps starting from y⃗ ∈ Y∗ and z⃗ ∈ Z∗, and we denote it by (y⃗, Y↦) ⪯n (z⃗, Z↦), if
the following conditions hold:

1. top(y⃗) ≈ top(z⃗), and

2. if n > 0 and y⃗ Y↦ y⃗′, then z⃗ Z↦ z⃗′ and (y⃗′, Y↦) ⪯n−1 (z⃗′, Z↦) for some z⃗′ ∈ Z∗.

Intuitively, the simulation (y⃗, Y↦) ⪯n (z⃗, Z↦) requires that every sequence of

n prefix-rewriting steps in Y↦ that starts from y⃗ can be simulated by a sequence

of n prefix-rewriting steps in Z↦ that starts from z⃗, while preserving the relation
≈ on the top elements,

Below, we prove that there exist suitable simulations from T↦ to T̃↦∗ and,

symmetrically, from T̃↦ to T↦∗ – from this it will follow that the games defined over
the arenas GR,T and G

R,T̃ are equivalent. More precisely, one direction amounts
at choosing ≈ to be the identity relation between components of T and at proving

that T↦ is ≈-simulated by the reflexive and transitive closure of T̃↦ , up to any
number n of steps and starting from the initial stacks Y0 and Y0 Ỹ0:

Claim 1 Let ≈ be the identity relation over SCC(T)× SCC(T̃) such that Y ≈ Z if
and only if Y = Z. For all numbers n ∈ N, we have

(Y0,
T↦) ⪯n (Y0 Ỹ0,

T̃↦∗).

Which XML schemas are streaming bounded repairable? 51

Proof of Claim 1. We remark that the following proof is uniform in n, in the sense

that T↦ is simulated by T̃↦∗ in a way that does not depend on the particular
value of n – in fact one could derive from this proof a stronger simulation relation
based on sequences of prefix-rewriting steps of arbitrary length. The general idea
is to exploit the presence of dummy components Ỹ to generate, so to say ‘at

runtime’, those components that were inserted by head recursive rules of T↦ ,

which have no analogous rules in T̃↦∗ . In order to identify pairs of stacks that
admit simulations, we introduce a new relation ↘ that holds between any two
stacks y⃗ = Y1 Y2 . . . Yk ∈ SCC(T)∗ and z⃗ ∈ SCC(T̃)∗ whenever there exist z⃗1, . . . , z⃗k
such that

z⃗ = Y1 Ỹ1 ⋅ z⃗1 T̃↦ Ỹ1 ⋅ z⃗1 T̃↦∗ Y2 Ỹ2 ⋅ z⃗2 T̃↦ Ỹ2 ⋅ z⃗2 T̃↦∗ . . . T̃↦∗ Yk Ỹk ⋅ z⃗k. (1)

Note that the relation ↘ holds trivially between the initial stacks y⃗ = Y0 and
z⃗ = Y0 Ỹ0. Moreover, y⃗ ↘ z⃗ clearly implies the first condition top(y⃗) ≈ top(z⃗) of

Definition 6. Below, we exploit a case distinction to verify that if y⃗ ↘ z⃗ and y⃗ T↦ y⃗′

hold, then there exists z⃗′ ∈ SCC(T̃)∗ such that y⃗′ ↘ z⃗′ and z⃗ T̃↦∗ z⃗′. From this it

will immediately follow that (Y0,
T↦) ⪯n (Y0 Ỹ0,

T̃↦) holds for all n ∈ N.

Suppose that y⃗ ↘ z⃗ and y⃗ T↦ y⃗′. We distinguish between the following cases:

1. If y⃗ is rewritten into y⃗′ by a push-and-swap operation that is not head recursive,
say

y⃗ = Y ⋅ tail(y⃗) T↦ Y1 Y2 ⋅ tail(y⃗) = y⃗
′

with Y1 ≠ Y and Y2 ≠ Y , then we can simply apply to z⃗ the rule Y ⋅
tail(z⃗) T̃↦ Y1 Ỹ1 Y2 Ỹ2 ⋅ tail(z⃗) – note that this rule, with tail(y⃗) in place of tail(z⃗),
was used to replace the considered push-and-swap operation of T↦ . In this
way we transform the stack z⃗ = Y ⋅ tail(z⃗) into the stack z⃗′ = Y1 Ỹ1 Y2 Ỹ2 ⋅ tail(z⃗).
Moreover, it is immediate to see that y⃗′ ↘ z⃗′.

The case of a push-and-swap operation of the form y⃗ = Y ⋅tail(y⃗) T↦ Y1 Y ⋅tail(y⃗) =
y⃗′ is similar, as one can apply a corresponding rule in T̃↦ to transform the
stack z⃗ = Y Ỹ ⋅ z⃗′′ into the stack z⃗′ = Y1 Ỹ1 Y Ỹ ⋅ z⃗′′ such that y⃗′ ↘ z⃗′.

2. A more interesting case is when a head recursive push-and-swap operation of
T↦ is applied, in which case we just let z⃗′ = z⃗ (namely, we take no action in

the system T̃↦∗). To show that this choice is correct it suffices to verify that
y⃗′ ↘ z⃗. Suppose that the head recursive push-and-swap operation on y⃗ is of
the form

y⃗ = Y ⋅ tail(y⃗) T↦ Y Y2 ⋅ tail(y⃗) = y⃗
′
,

where Y2 ≠ Y (the case where Y2 = Y is similar). We recall that the above
operation, devoid of the occurrences of tail(y⃗), is replaced by a prefix-rewriting

rule of T̃↦ of the form

Ỹ T̃↦ Y2 Ỹ2 Ỹ .

We also derive from the assumption y⃗ ↘ z⃗ the existence of some stacks z⃗1
and z⃗′′ such that z⃗ = Y Ỹ ⋅ z⃗1, Ỹ ⋅ z⃗1 T̃↦∗ z⃗′′, and tail(y⃗) ↘ z⃗′′. To prove that

52 Pierre Bourhis et al.

y⃗′ = Y Y2 ⋅ tail(y⃗) ↘ z⃗, it suffices to define z⃗2 = Ỹ ⋅ z⃗1 as the intermediate stack

that witnesses a derivation of T̃↦∗ satisfying Equation (1), that is:

z⃗ = Y Ỹ ⋅ z⃗1 T̃↦ Ỹ ⋅ z⃗1 T̃↦∗ Y2 Ỹ2 Ỹ ⋅ z⃗1
²⃗
z2

T̃↦ Ỹ2 Ỹ ⋅ z⃗1 T̃↦∗ z⃗
′′

3. The last interesting case is when a pop operation is executed that transforms
y⃗ = Y1 Y2 . . . Yk into y⃗′ = Y2 . . . Yk. In this case, we derive form the assumption
y⃗ ↘ z⃗ the existence of a sequence of stacks z⃗1, . . . , z⃗k satisfying Equation (1).
We respond to the pop operation by transforming z⃗ into z⃗′ = Y2 Ỹ2 ⋅ z⃗2, that
is, by first popping the top element of z⃗ (= Y1 Ỹ1 ⋅ z⃗1), so as to reach the stack

Ỹ1 ⋅ z⃗1, and then applying the derivation Ỹ1 ⋅ z⃗1 T̃↦∗ Y2 Ỹ2 ⋅ z⃗2 = z⃗′, as witnessed
by Equation (1). Finally, it is easy to verify that y⃗′ ↘ z⃗′.

This completes the proof of Claim 1. ⊓⊔

The other direction of the simulation, namely, the one that goes from T̃↦ to
T↦∗ , is slightly more complicated. First of all, because the basic prefix-rewriting

steps of T̃↦ may insert dummy components at the top of the stacks, we need
to compare these dummy components with real components of T . For this we
define the relation ≈ over SCC(T) × SCC(T̃) so as to pair any two components
Y and Z, when Z is dummy. We anticipate that such a definition is introduced
here only to ease the inductive construction of a simulation – in particular, the
specific relationships with the dummy components are immaterial with respect to
the moves of the game over G

R,T̃ . We then aim at proving the following claim:

Claim 2. Let ≈ be the relation over SCC(T) × SCC(T̃) such that Y ≈ Z if and
only if Y = Z or Z is a dummy component. For all n ∈ N, we have

(Y0 Ỹ0,
T̃↦) ⪯n (Y0,

T↦∗).

Proof of Claim 2.. The difficulties here are somehow symmetric to those of the
previous proof. In particular, in the previous proof we had to simulate properly

the head recursive rules of T↦ , while here the system T̃↦ to be simulated has no

head recursion. On the other hand, the rules of T̃↦ can generate new stacks from

dummy components, which is clearly not possible in the system T↦∗ . In order to
be able to simulate the latter rules on a dummy component Ỹ , we need to act
beforehand, namely, when the corresponding component Y appears at the top of
the stack. Intuitively, when Y is at the top of a stack, we can execute some head

recursive push-and-swap operations of T↦ so as to generate long enough stacks
that can be used later to ‘cover’ the possible derivations from the dummy copy Ỹ .
To do so, we associate with each component Y of T the (possibly empty) string

pump(Y) = Y1 . . . Yk

that contains all and only the components Yi (in some arbitrary order) that admit

head recursive rules of the form Y T↦ Y Yi. Note that every time a component

Which XML schemas are streaming bounded repairable? 53

Y of T appears at the top of a stack, one can execute a series of push-and-swap

operations in T↦ that transform Y into Y ⋅ (pump(Y))n, for any given n ∈ N.

We now turn towards describing the pairs of stacks that admit simulations up
to n steps. For this we introduce a relation ↖n, also parametrized by n, that holds
between any two stacks y⃗ ∈ SCC(T)∗ and z⃗ = Z1 Z2 . . . Zh ∈ SCC(T̃)∗ whenever
there exist y⃗1, . . . , y⃗h such that

y⃗ = fn(Z1) ⋅ y⃗1
T↦∗ y⃗1

T↦∗ fn(Z2) ⋅ y⃗2
T↦∗ y⃗2

T↦∗ . . . T↦∗ fn(Zh) ⋅ y⃗h

where fn(Z) is either Y or (pump(Y))n, depending on whether Z = Y ∈ SCC(T) or

Z = Ỹ . Note that y⃗ ↖n z⃗ implies top(y⃗) ≈ top(z⃗). Moreover, from the initial stack
Y0 we can always execute a series of head recursive push-and-swap operations of
T↦ so as to obtain a stack y⃗0 = Y0 ⋅ fn(Ỹ0) such that y⃗0 ↖n Y0 Ỹ0. Below, we prove

that if n > 0, y⃗ ↖n z⃗, and z⃗ T̃↦ z⃗′, then there exists a derivation y⃗ T↦∗ y⃗′ such that
y⃗′ ↖n−1 z⃗

′. Based on all these results, we will be able to conclude that Claim 2
holds. As usual, the proof is by case distinction:

1. We consider first the case of a prefix-rewriting rule

z⃗ = Y ⋅ tail(z⃗) T̃↦ Y1 Ỹ1 Y2 Ỹ2 ⋅ tail(z⃗) = z⃗
′

where Y, Y1, Y2 are non-dummy components, Y1 ≠ Y , and Y2 ≠ Y . From the
assumption y⃗ ↖n z⃗ we derive that y⃗ = fn(Y) ⋅ tail(y⃗) = Y ⋅ tail(y⃗). Accordingly,
we can respond to the above move with the push-and-swap operation y⃗ =
Y ⋅ tail(y⃗) T↦ Y1 Y2 ⋅ tail(y⃗), which is not head recursive, followed by a (possibly
empty) series of head recursive push-and-swap operations that transform Y1 Y2 ⋅
tail(y⃗) into

y⃗
′ = Y1 ⋅ (pump(Y1))

n ⋅ Y2 ⋅ tail(y⃗).

It is easy to verify that y⃗′ ↖n z⃗′, and hence y⃗′ ↖n−1 z⃗
′.

The case of a rule of the form z⃗ = Y ⋅ tail(z⃗) T̃↦ Y1 Ỹ1 Y ⋅ tail(z⃗) = z⃗′ is similar.
2. Next, we consider the case of a rule

z⃗ = Ỹ ⋅ tail(z⃗) T̃↦ Y2 Ỹ2 Ỹ ⋅ tail(z⃗) = z⃗
′

where Y ≠ Y2. Thanks to the assumption y⃗ ↖n z⃗, we can write y⃗ as y⃗ =
fn(Ỹ) ⋅ y⃗1 = (pump(Y))n ⋅ y⃗1 and we can find a derivation y⃗1

T↦∗ y⃗′1 such
that y⃗′1 ↖n tail(z⃗). Consider now the head recursive push-and-swap operation

Y T↦ Y Y2, which corresponds to the above move of T̃↦ , devoid of tail(z⃗). Since

n > 0, we know that (pump(Y))n = pump(Y) ⋅(pump(Y))n−1
and that pump(Y)

contains an occurrence of the component Y2. This means that by applying a

series of pop operations in T↦∗ , we can transform the stack y⃗ = (pump(Y))n ⋅ y⃗1

into a stack of the form

y⃗
′ = Y2 ⋅ y⃗′′ ⋅ (pump(Y))n−1 ⋅ y⃗1,

for some proper suffix y⃗′′ of pump(Y). Moreover, to verify that y⃗′ ↖n−1 z⃗
′ it

suffices to recall that z⃗′ = Y2 Ỹ2 Ỹ ⋅ tail(z⃗) and y⃗1
T↦∗ y⃗′1 ↖n tail(z⃗), and to

54 Pierre Bourhis et al.

construct the following derivation:

Y2
¯

fn−1(Y2)

⋅ y⃗′′ ⋅ (pump(Y))n−1 ⋅ y⃗1
T↦∗ (pump(Y2))

n−1

´¹¹¸¹¹¶
fn−1(Ỹ2)

⋅ y⃗′′ ⋅ (pump(Y))n−1 ⋅ y⃗1

T↦∗ (pump(Y))n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fn−1(Ỹ)

⋅ y⃗1
T↦∗ y⃗1

T↦∗ y⃗′1.

3. It remains to consider the case of a pop operation z⃗ = Z ⋅ tail(z⃗) T̃↦ tail(z⃗) = z⃗′.

The fact that it can be simulated by T↦∗ follows easily from the definition
y⃗ ↖n z⃗. Indeed, if z⃗ = Z1 Z2 . . . Zh and y⃗ ↖n z⃗, then by popping the prefix
fn(Z1) from y⃗ and by transforming the remaining part y⃗1 into fn(Z2) ⋅ y⃗2, we
reach a stack y⃗′ = fn(Z2) ⋅ y⃗2 such that y⃗′ ↖n−1 z⃗

′.

This completes the proof of Claim 2. ⊓⊔

We proved that the prefix-rewriting system T↦ is simulated by T̃↦∗ up to

any number of steps, and, vice versa, the prefix-rewriting system T̃↦ is simulated

by T↦∗ up to any number of runs. This allows us to claim that the reachability
games over the arena GR,T and over the arena G

R,T̃ are equivalent, namely, they
admit the same winner. Indeed, suppose that Repairer has a strategy to win the
variant of the game over G

R,T̃ . Each move suggested by his strategy consists

of a finite sequence of basic rewriting steps satisfying T̃↦ . Since there are only
finitely many plays over G

R,T̃ , we can define n to be the maximum number of
basic rewriting steps executed by Repairer during every possible play over GR,T
induced by his strategy. We then recall from Claim 2 that every sequence of basic

prefix-rewriting steps of T̃↦ of length at most n can be simulated by a sequence of

prefix-rewriting steps of T̃↦∗ . Moreover, for every instance (z⃗, T̃↦) ≺n′ (y⃗, T↦∗)
of the simulation relation, as derived in Claim 2, either top(z⃗) = top(y⃗) or top(z⃗)
is a dummy component; in particular, we have L (T ∣ top(z⃗)) ⊆ L (T̃ ∣ top(y⃗))
(recall that a dummy component recognizes the empty language of contexts). One
can finally use the simulation to construct a strategy for Repairer to win the game
over the arena GR,T . The converse direction follows symmetric arguments and
exploit Claim 1 – in fact, in this direction the proof is slightly simpler, since there
is no need to fix a bound n to the length of the plays (recall that Claim 1 defines a

simulation from T↦ to T̃↦∗ in a uniform way, that is, independently of the number
of moves to be simulated).

Thanks to the above arguments, we can decide whether there exists a streaming
repair strategy from L (R) to L (T) with uniformly bounded cost by checking
whether Repairer wins the game over G

R,T̃ . Furthermore, we recall that the stacks
that can be reached over the arena G

R,T̃ have length at most linear in the size of
R and T . This allows us to use an alternating polynomial-space procedure that
simulates the possible plays in G

R,T̃ , eventually determining the winner of the
game. ⊓⊔

The next theorem shows that the streaming bounded repairability problem for
top-down deterministic tree automata is Exp-hard. In fact, it shows that Exp-
hardness holds even for languages specified by non-recursive deterministic DTDs

Which XML schemas are streaming bounded repairable? 55

(see Section 2). Given that any deterministic DTD can be efficiently translated
into an equivalent top-down deterministic tree automaton [16], the Exp-hardness
result can be transferred to languages recognized by top-down deterministic tree
automata.

Theorem 3 The problem of streaming bounded repairability for languages defined by

non-recursive deterministic DTDs is Exp-hard.

Proof. The proof is by reduction from the problem of deciding the winner of a
tiling game over a corridor of polynomial width and exponential height. Formally,
an instance of the latter problem is a tuple I = (n,C,H, V, a�), where n is the
width of the corridor to be tiled (this number is presented in unary notation), C
is a set of available tiles, H,V ⊆ C ×C are the vertical and horizontal constraints,
and a� ∈ C is a special tile that must appear at the bottom row. For any natural
number k, we define a tiling of height k (for the instance I) to be any function g

with domain [1, k]× [1, n] and codomain C. Furthermore, we say that the tiling g
is correct if it satisfies the following constraints:

1. g(1, j) = a� for all 1 ≤ j ≤ n,
2. (g(i, j − 1), g(i, j)) ∈ H for all 1 ≤ i ≤ k and all 1 < j ≤ n,

3. (g(i − 1, j), g(i, j)) ∈ V for all 1 < i ≤ k and all 1 ≤ j ≤ n.

The tiling game is run by two players, Adam and Eve, as follows. A configuration of
the tiling game at round k is a correct tiling gk of height k (accordingly, the empty
tiling of height 0 is the initial configuration of the game). Adam moves at odd
rounds (so he moves first by inserting a row of the form a� . . . a�), while Eve moves
at even rounds. Given a correct tiling gk at round k, the move of the corresponding
player consists of extending gk to a correct tiling gk+1 of height k + 1. The player
who cannot move, due to the enforced constraints, loses. Moreover, without loss
of generality, we can assume that Adam wins as soon as the height of the tiling
reaches 2n+1. We know from [8] that the problem of deciding the winner of a
tiling game is hard for alternating polynomial-space Turing machines, and hence
Exp-hard.

The goal of the proof is to construct two DTDs R and T of size polynomial
in ∣I ∣ that define languages R and T such that R is streaming bounded repairable
into T if and only if Eve wins the instance I of the tiling game. As the reduction
is quite technical, the reader may want to first look at a simplified version of it,
which is given in the proof of Theorem 5.

The general intuition is that the restriction DTD R will generate encodings
of rows of tiles, which represent the possible moves of Adam at the odd rounds.
We will allow some redundancy in the encodings of Adam rows in order to forbid
any repair processor to modify them with boundedly many edits. Symmetrically,
the target DTD T will require ‘interleaving’ the rows produced by Adam with
new rows, representing Eve responses to Adam. Since we cannot directly enforce
that the rows generated by the restriction DTD satisfy the vertical constraints,
we need to allow Adam to ‘cheat’ by producing rows that do not match with the
previous ones. This freedom is countered by the possibility of Eve of producing an
ad hoc repair that ‘exposes’ a violation of the constraints, making it checkable by
a DTD of small size. In order to handle all the constraints of the reduction, we
will adopt suitable encodings of rows of tiles based on trees. In particular, these

56 Pierre Bourhis et al.

(an, n)

←ÐÐÐÐ
(an, n)+

(an−1, n − 1)

←ÐÐÐÐÐÐÐÐ
(an−1, n − 1)+

(a1,1)

←ÐÐÐ
(a1,1)

+

RRRRRRRRRRR

ÐÐÐ→
(a1,1)

+

ÐÐÐÐÐÐÐÐ→
(an−1, n − 1)+

ÐÐÐÐ→
(an, n)+

(a) Encoding of a single row.

r0

r1

r2

rn

α1α1α1 . . .
RRRRRRRRRRR

r2

. . .

rn

α2nα2nα2n

#+

(b) Encoding of 2n rows and dummy tiles.

Fig. 7 Encoding of rows produced by Adam. The nodes annotated with left and right arrows
in the left figure give redundant encodings of the tiles at their parents (the superscript +

denotes an arbitrary non-empty repetition of the underlying symbol).

encodings will ease detecting the possible violations of the vertical constraints, as
well as checking that the height of a tiling never exceeds 2n+1. We now describe in
detail how the restriction and target DTDs encode the rows produced by Adam
and Eve and how the target can expose a possible violation of the constraints.

We generically denote a row produced by Adam by α = a1 . . . an (recall that
n is the width of the corridor), and we encode such a row by means of a tree, like
the one shown in Figure 7(a). We observe that, according to this encoding, the
tiles a1, . . . , an of α are paired with the indices 1, . . . , n of the columns where they
appear, and they are listed from bottom to top along the middle spine of the tree
(e.g., the rightmost tile appears at the root of the spine). Moreover, to make the
encoding robust to editings of bounded cost, tiles can be repeated an arbitrary
number of times both to the left and to the right of the spine (these repetitions of
tiles are encoded by new copies of the symbols (ai, i) annotated with left and right
arrows; the superscript + in Figure 7(a) denotes an arbitrary non-empty repetition
of these symbols). We will see later how the above encoding eases the exposure
of a possible violation of a vertical constraint between two contiguous rows (one
produced by Adam and the other produced by Eve).

The list of the possible rows that could be produced by Adam is represented
inside a larger tree. As Adam produces exactly 2n rows, say α1, . . . , α2n , it is
sufficient to construct a full binary tree of height n and append to its leaves the
encodings of α1, . . . , α2n . Moreover, for a technical reason that will be clear later,
Adam will produce a repetition of a dummy tile # at the end of the list of his
rows. The rough intuition is that, if Adam cheats, then a repair process can easily
get to the target language by deleting a dummy tile. A tree-shaped encoding of
the rows provided by Adam is shown in Figure 7(b). For the sake of simplicity, we
named the sub-trees containing the encodings of the rows of Adam with the bold
letters α1, . . . , α2n .

Trees of the above form are easily defined by a DTD of size polynomial in the
instance I of the tiling game. Specifically, they belong to the following restriction

Which XML schemas are streaming bounded repairable? 57

r0

Ð�α 1
Ð�α 1
Ð�α 1

r1

r2

rn

Ð�α 1
Ð�α 1
Ð�α 1

Ð�α 2
Ð�α 2
Ð�α 2

. . .

r2

. . .

rn

Ð�α 2n−1
Ð�α 2n−1
Ð�α 2n−1

Ð�α 2n
Ð�α 2n
Ð�α 2n

Ð�α 2n
Ð�α 2n
Ð�α 2n

#+

Fig. 8 Intermediate stage of a repair.

DTD (the symbols with no derivation rules are meant to be terminal):

R ∶ r0 → r1 #+

r1 → r2 r2

⋮

rn−1 → rn rn

rn → ⋃
a∈C

(a, n)

(a, n) →
←ÐÐÐ
(a, n)+ (⋃

(a′,a)∈H
(a′, n − 1))

ÐÐÐ→
(a, n)+

⋮

(a,1) →
←ÐÐÐ
(a,1)+

ÐÐÐ→
(a,1)+

We observe that the above DTD already enforces the horizontal constraints within
the rows; the vertical constraints will be validated during the repair process.

Before describing the target language, we formalize a canonical repair strategy
that is applicable to the serialization of a generic tree in the restriction language,
under the assumption that Eve wins the tiling game. The first step of the canonical
repair strategy consists of flattening the input tree from the restriction language
by removing all nodes labeled with r0, ri, or (a, i), for all 1 ≤ i ≤ n and a ∈ C. This
results in a series of forests Ð�α 1, Ð�α 1, . . . , Ð�α 2n , Ð�α 2n , where each Ð�α i (resp. Ð�α i) can
be seen as a redundant encoding of the i-th row αi produced by Adam, read from
right to left (resp. from left to right). The next step of the repair process consists of
reconstructing a new full binary tree that spans the previously mentioned forests
(possibly modified) and groups them into pairs, leaving out just the first and
the last forest. This operation is required to induce a shift in the grouping of the
forests, so as to ease the verification of the vertical constraints between consecutive
rows. Intuitively, at this stage of the repair process an intermediate tree, like the
one shown in Figure 8, is obtained (the nodes in bold can still be modified).

We remark that if Adam started the tiling game by inserting a row different
from α� = a� . . . a�, already at this stage of the repair process one could easily
detect the violation of the constraints and accordingly get into a suitable target
language. In the following, we will describe the remaining editing operations, which
are performed when Adam did not cheat right at the beginning.

We recall that Eve plays the tiling game according to a winning strategy.
Because of that, and due to the shape of the intermediate tree, we know that
Adam must produce at some point, say at some turn i∗ of the game, a row that
violates the vertical constraints. Until that moment, the canonical repair strategy
can simply mimic the moves of Eve and modify the input tree as follows. Suppose

58 Pierre Bourhis et al.

that at some turn i < i∗ Adam plays the row αi = ai,1 . . . ai,n and Eve can respond
with the row βi = bi,1 . . . bi,n. At this moment, a prefix of the serialized input tree
is disclosed and its flattening (obtained by removing the opening and closing tags
for the nodes labeled over {ri ∣ 1 ≤ i ≤ n} ∪ {(a, i) ∣ a ∈ C, 1 ≤ i ≤ n}) ends with a
string of the form

(
←ÐÐÐÐ
(ai,n, n)

←ÐÐÐÐ
(ai,n, n))

+

. . . (
←ÐÐÐÐ
(ai,1,1)

←ÐÐÐÐ
(ai,1,1))

+

´¹¹¸¹¹¶
Ð�α i

(
ÐÐÐÐ→
(ai,1,1)

ÐÐÐÐ→
(ai,1,1))

+

. . . (
ÐÐÐÐ→
(ai,n, n)

ÐÐÐÐ→
(ai,n, n))

+

´¹¹¸¹¹¶
Ð�α i

(the overlined symbols denote the matching closing tags). Accordingly, the canon-
ical repair strategy modifies the string Ð�α i by prepending the opening tag (bi,j , j)
to each factor (

ÐÐÐÐ→
(ai,j , j)

ÐÐÐÐ→
(ai,j , j))

+

, thus forming the output

(
←ÐÐÐÐ
(ai,n, n)

←ÐÐÐÐ
(ai,n, n))

+

. . . (
←ÐÐÐÐ
(ai,1,1)

←ÐÐÐÐ
(ai,1,1))

+

(bi,1,1)(bi,1,1)(bi,1,1) (
ÐÐÐÐ→
(ai,1,1)

ÐÐÐÐ→
(ai,1,1))

+

. . . (bi,n, n)(bi,n, n)(bi,n, n) (
ÐÐÐÐ→
(ai,n, n)

ÐÐÐÐ→
(ai,n, n))

+

(the inserted opening tags are listed in bold and will be closed at the next repair
step). Suitable constraints in the target language will enforce the fact that the row
βi = bi,1 . . . bi,n inserted by Eve satisfies the horizontal constraints and also the
vertical constraints with respect to the row αi = ai,1 . . . ai,n inserted by Adam.
After this edit, the input is resumed and the first part of the encoding of the next
row αi+1 = ai+1,1 . . . ai+1,n is consumed, that is:

(
←ÐÐÐÐÐÐ
(ai+1,n, n)

←ÐÐÐÐÐÐ
(ai+1,n, n))

+

. . . (
←ÐÐÐÐÐÐ
(ai+1,1,1)

←ÐÐÐÐÐÐ
(ai+1,1,1))

+

´¹¹¹¸¹¹¹¶
Ð�α i+1

.

Now, if the row αi+1 is correct, namely, if i + 1 < i∗, then the canonical repair

strategy appends to each block (
←ÐÐÐÐÐ
(ai+1,j , j)

←ÐÐÐÐÐ
(ai+1,j , j))

+

the closing tag (bi,j , j),
thus forming the output

(
←ÐÐÐÐÐÐ
(ai+1,n, n)

←ÐÐÐÐÐÐ
(ai+1,n, n))

+

(bi,n, n)(bi,n, n)(bi,n, n) . . . (
←ÐÐÐÐÐÐ
(ai+1,1,1)

←ÐÐÐÐÐÐ
(ai+1,1,1))

+

(bi,1,1)(bi,1,1)(bi,1,1) .

Otherwise, if the row is not correct, namely, if i + 1 = i∗, then we know that there
is a column j that witnesses the violation, namely, such that (bi,j , ai+1,j) /∈ V . In
this case, the canonical repair strategy performs an editing similar to the previous
one, with the only difference that the forests encoded in the j-th and the (j − 1)-th
blocks of Ð�α i+1 are gathered together under the same node labeled with bi,j , and
then highlighted by a node with a special label ERR. This trick is used, not because
the tile ai+1,j−1 is relevant for the violation itself, but because doing so will induce
a shift in the tiling produced thereafter, which will propagate up to the root of
the output tree, allowing in this way the validation by a target DTD. Formally,

Which XML schemas are streaming bounded repairable? 59

(bi,1,1)(bi,1,1)(bi,1,1)

ÐÐÐÐ→
(ai,1,1)

+

(bi,2,2)(bi,2,2)(bi,2,2)

ÐÐÐÐ→
(ai,2,2)

+

(bi,n−1, n−1)(bi,n−1, n−1)(bi,n−1, n−1)

ÐÐÐÐÐÐÐÐ→
(ai,n−1, n−1)+

(bi,n, n)(bi,n, n)(bi,n, n)

ÐÐÐÐÐ→
(ai,n, n)

+
←ÐÐÐÐÐÐ
(ai+1,n, n)

+

←ÐÐÐÐÐÐÐÐÐ
(ai+1,n−1, n−1)+

←ÐÐÐÐÐÐ
(ai+1,2,2)

+

←ÐÐÐÐÐÐ
(ai+1,1,1)

+

(bi,1,1)(bi,1,1)(bi,1,1)

ÐÐÐÐ→
(ai,1,1)

+

(bi,2,2)(bi,2,2)(bi,2,2)

ÐÐÐÐ→
(ai,2,2)

+

(bi,n−1, n−1)(bi,n−1, n−1)(bi,n−1, n−1)

ÐÐÐÐÐÐÐÐ→
(ai,n−1, n−1)+

(bi,n, n)(bi,n, n)(bi,n, n)

ÐÐÐÐÐ→
(ai,n, n)

+
←ÐÐÐÐÐÐ
(ai+1,n, n)

+

←ÐÐÐÐÐÐÐÐÐ
(ai+1,n−1, n−1)+

ERRERRERR
←ÐÐÐÐÐÐ
(ai+1,2,2)

+
←ÐÐÐÐÐÐ
(ai+1,1,1)

+

ÐÐÐÐÐÐ→
(ai+2,1,1)

+

(bi,1,1)(bi,1,1)(bi,1,1)

ÐÐÐÐ→
(ai,2,2)

+

(bi,2,2)(bi,2,2)(bi,2,2)

ÐÐÐÐ→
(ai,3,3)

+

(bi,n, n)(bi,n, n)(bi,n, n)

ÐÐÐÐÐ→
(ai,n, n)

+

(bi,n, n)(bi,n, n)(bi,n, n)

←ÐÐÐÐÐÐ
(ai+1,n, n)

+
←ÐÐÐÐÐÐÐÐÐ
(ai+1,n−2, n−2)+

←ÐÐÐÐÐÐÐÐÐÐ
(ai+1,n−1, n − 1)+

←ÐÐÐÐÐÐ
(ai+1,1,1)

+

ÐÐÐÐÐÐ→
(ai+2,1,1)

+

Fig. 9 Examples of subtrees that can arise from the canonical repair process.

the output produced in this case is:

(
←ÐÐÐÐÐÐ
(ai+1,n, n)

←ÐÐÐÐÐÐ
(ai+1,n, n))

+

(bi,n, n)(bi,n, n)(bi,n, n) . . . (
←ÐÐÐÐÐÐÐÐÐ
(ai+1,j+1, j + 1)

←ÐÐÐÐÐÐÐÐÐ
(ai+1,j+1, j + 1))

+

(bi,j+1, j + 1)(bi,j+1, j + 1)(bi,j+1, j + 1)

ERRERRERR ERRERRERR (
←ÐÐÐÐÐ
(ai+1,j , j)

←ÐÐÐÐÐ
(ai+1,j , j))

+

(
←ÐÐÐÐÐÐÐÐÐ
(ai+1,j−1, j − 1)

←ÐÐÐÐÐÐÐÐÐ
(ai+1,j−1, j − 1))

+

(bi,j , j)(bi,j , j)(bi,j , j) . . .

(
←ÐÐÐÐÐÐÐÐÐ
(ai+1,j−2, j − 2)

←ÐÐÐÐÐÐÐÐÐ
(ai+1,j−2, j − 2))

+

(bi,j−1, j − 1)(bi,j−1, j − 1)(bi,j−1, j − 1) . . . (
←ÐÐÐÐÐÐ
(ai+1,1,1)

←ÐÐÐÐÐÐ
(ai+1,1,1))

+

(bi,2,2)(bi,2,2)(bi,2,2).

We observe that, differently from the previous case, the repaired string ends with
the closing tag (bi,2,2). Accordingly, the remaining tag (bi,1,1) will be appended

to the next incoming block, that is, (
ÐÐÐÐÐÐ→
(ai+2,1,1)

ÐÐÐÐÐÐ→
(ai+2,1,1))

+

, if i + 1 < 2n, or to the

last part of the input that consists of a repetition of #. It should be now clear
that, when Adam produces an incorrect row, the canonical repair strategy has the
possibility of hiding the repetition of # under a node and accordingly get into the
target language.

For the sake of clarity, we describe in Figure 9 some subtrees that could possibly
arise from the repair process. The left-hand side tree can be used before a violation
of the constraints occurred, the tree in the middle can be used when the first
violation of the constraints occurs – in this specific case, a violation on column
2 –, and the right-hand side tree is used after a violation has been exposed. Note
that at this stage it is possible to check, at least locally, whether a violation has
occurred or not; for instance, the middle tree violates the constraints because
(bi,2, ai+1,2) /∈ V – this can be easily checked by a deterministic DTD.

60 Pierre Bourhis et al.

On the grounds of the above explanations, it is natural to define the following
DTD for the target language:

T ∶ r0 →
Ð�
A� ⋅ r1 ⋅

Ð�
A#

r0 →
Ð�
A /� ⋅ r1 ⋅

Ð�
A#

r1 → r2 r2

⋮

rn−1 → rn rn

rn → ⋃
b∈C

(b,1)

(b,1) → Left(b,1) ⋅ (⋃
(b,b′)∈H

(b′,2)) ⋅ Right(b,1)

⋮

(b, n−1) → Left(b, n−1) ⋅ (⋃
(b,b′)∈H

(b′, n)) ⋅ Right(b, n−1)

(b, n) → Left(b, n) ⋅ Right(b, n)

where

–
Ð�
A� is the language: (

←ÐÐÐ
(a�, n))

+

⋯ (
←ÐÐÐ
(a�,1))

+

,

–
Ð�
A# is the language: (⋃

a∈C

ÐÐÐ→
(a,2)+) ⋯ (⋃

a∈C

ÐÐÐ→
(a, n)+) ⋅#+,

–
Ð�
A /� is the language of the form:

⎛
⎝ ⋃1≤i≤n

(⋃
a∈C

←ÐÐÐ
(a, n)+) ⋯ (⋃

a∈C∖{a�}

←ÐÐ
(a, i)+) ⋯ (⋃

a∈C

←ÐÐÐ
(a,1)+)

⎞
⎠
⋅ (⋃
a∈C

ÐÐÐ→
(a,1)+),

– Left(b, j), for 1 ≤ j < n, is the language: (⋃
(a,b)∈V

ÐÐ→
(a, j)+) ∪ (⋃

a∈C

ÐÐÐÐÐ→
(a, j + 1)+),

– Left(b, j), for j = n, is the language : (⋃
(a,b)∈V

ÐÐÐ→
(a, n)+) ∪ (⋃

a∈C

←ÐÐÐ
(a, n)+),

– Right(b, j), for 1 < j ≤ n, is the language:

(⋃
(b,a)∈V

←ÐÐ
(a, j)+) ∪ (ERR ⋅ ⋃

(b,a)/∈V

←ÐÐ
(a, j)+ ⋅⋃

a∈C

←ÐÐÐÐÐ
(a, j − 1)+) ∪ (⋃

a∈C

←ÐÐÐÐÐ
(a, j − 1)+),

– Right(b, j), for j = 1, is the language:

(⋃
(b,a)∈V

←ÐÐÐ
(a,1)+) ∪ (ERR ⋅ ⋃

(b,a)/∈V

←ÐÐÐ
(a,1)+ ⋅ ⋃

a∈C

ÐÐÐ→
(a,1)+) ∪ (⋃

a∈C

ÐÐÐ→
(a,1)+).

Note that the above languages can be defined by DFAs of polynomial size, and
the target DTD can be produced in polynomial time.

We already described a canonical repair strategy that, under the assumption
that Eve wins the tiling game, transforms any tree from the restriction language
into a tree of the target language with a uniformly bounded cost. It remains to
prove the converse, that is, if there is a repair processor fromR to T with uniformly
bounded cost, then Eve wins the tiling game. To prove this, we first recall that the
restriction language R contains all trees that encode lists of 2n rows that satisfy
the horizontal constraints and that can be chosen by Adam, independently of the
possible responses by Eve (of course, the rows chosen by Eve are not encoded inside
the restriction language). Thus, as far as we are concerned with the sequence of
rows that Adam can choose during a play of the tiling game, it suffices to look
at the trees in R. In particular, from any prefix of a serialized tree in R, we can
easily read off a sequence of rows, which we assume can be played by Adam.

Which XML schemas are streaming bounded repairable? 61

Now, suppose that there is a tree-edit transducer that receives the serializations
of the trees in R and transforms them, with uniformly bounded cost, to some
trees in the target language T . Recall that, within the trees of R, each tile can
be encoded with an arbitrary amount of redundancy. It is thus impossible for the
bounded cost transducer to erase or replace even a single tile in a row produced by
Adam. Moreover, because the repairs are implemented by a tree edit transducer,
the occurrence order of the tiles produced by Adam is preserved during the repair.
Similarly, it is also impossible for the transducer to forge new rows and pretend
they were played by Adam, as this anomaly is easily detected in the target language
by an increase of the number of rows. This means that the choices of Adam are
still correctly represented in the edited serializations of the input trees. Moreover,
in the edited serializations, the rows produced of Adam that occur before the
ERR tag, are interleaved with other rows. We can use the latter rows as responses
of Eve to Adam moves. Formally, by looking at the edited serializations and by
exploiting a simple induction based on the number of rounds in the tiling game, we
can construct a strategy for Eve that associates with each partial play ending with
a row produced by Adam a corresponding row that should be chosen by Eve. We
claim that the defined strategy for Eve is correct, in the sense that, no matter how
Adam plays, Eve will respond with an appropriate row that satisfies the constraints
of the tiling game. Indeed, we know that the edited serializations belong to the
target language T , and hence every row that is inserted by the transducer (which
can be then chosen by Eve) must satisfy the horizontal constraints and the vertical
constraints with respect to the underlying row produced by Adam. Moreover, we
recall that all edited serializations contain an occurrence of the ERR tag. This
means that, along any play induced by Eve’s strategy, Adam eventually violates
the vertical constraints. By contraposition, this shows that Eve wins the tiling
game if Adam never violates the constraints. ⊓⊔

We now exhibit a sub-class of tree automata recognizing restriction languages
for which the streaming bounded repairability problem becomes easier to solve,
namely, PSpace-complete. The sub-class is obtained by restricting the accessibility
graph of the strongly connected components of R so as to take the shape of
a tree. Given two components X and X′ of R, we write X Ð→∗

R X′ whenever
there exist some states q ∈ X and q′ ∈ X′ that are connected in the transition
graph GR by a directed path of (horizontal or vertical) edges. The graph that
consists of the components of R and the edges X Ð→∗

R X′ is a directed acyclic
graph, and it is denoted by dag(R). We say that R is tree-shaped if dag(R) is
diamond-free, namely, if X1 Ð→∗

R X′ and X2 Ð→∗
R X′ imply either X1 Ð→∗

R X2

or X2 Ð→∗
R X1. Similarly, we say that a restriction DTD D is tree-shaped if its

language is recognized by a tree-shaped automaton of size linear in D.
Below, we show that the problem of streaming bounded repairability is PSpace-

complete for restriction languages recognized by tree-shaped automata, and it is
hard already for languages specified by tree-shaped deterministic DTDs.

Theorem 4 The problem of streaming bounded repairability for restriction languages

recognized by tree-shaped top-down deterministic tree automata is in PSpace.

Proof. A proof of the PSpace upper bound is as follows. From the fact that the
restriction automaton is tree-shaped, we first derive a polynomial bound on the
length of the possible plays over GR,T . This bound follows easily from the fact

62 Pierre Bourhis et al.

r

(x1, true)

#+
1 (x2, true)

#+
2 (x3, false)

#+
3 (x4, true)

#+
4

C+
j

ÐÐÐÐÐ→
(x4, true)+

ÐÐÐÐÐÐ→
(x3, false)+

ÐÐÐÐÐ→
(x2, true)+

ÐÐÐÐÐ→
(x1, true)+

Fig. 10 Tree encoding of a valuation.

that every move of Generator induces a change of component in R, precisely, it is
of the form

JX ⋅ x⃗ , y⃗ K Gen↦ ⟪X1 X2 ⋅ x⃗ , y⃗⟫
where the two components X1 and X2 are different from X and belong to disjoint
sub-trees of dag(R) strictly below X. In particular, this implies that the number
of moves that can be subsequently chosen by Generator never exceeds the number
of components of R. Based on this bound, we can simulate the possible plays over
the arena GR,T by means of an alternating polynomial-time procedure. This shows
that the considered repairability problem is in PSpace. ⊓⊔

Theorem 5 The problem of streaming bounded repairability for restriction languages

defined by tree-shaped deterministic DTDs is PSpace-hard.

Proof. We give a reduction from the problem of deciding validity of a quantified
boolean sentence of the form

φ = ∀x1 ∃y1 . . . ∀xn ∃yn ψ(x1, y1, . . . , xn, yn)

where ψ(x1, y1, . . . , xn, yn) is in conjunctive normal form. More precisely, we will
construct two tree-shaped DTDs R and T such that φ is satisfiable if and only if
R is streaming bounded repairable into T . Some of the ingredients of this proof
will be similar to the reduction from the tiling game given in Theorem 3. Let φ
be a quantified boolean sentence such as the above one and let C1,⋯, Ck be the
clauses (i.e. disjunctions of literals) in ψ. Without loss of generality, we can assume
that every clause contains a fixed number of literals, say 3 (the validity problem
in this case is still PSpace-hard).

The restriction DTD R will produce all possible redundant encodings of val-
uations for the variables x1, . . . , xn, followed by a clause of ψ that needs to be
satisfied. Figure 10 shows an example of the encoding of a valuation for four vari-
ables x1, . . . , x4. The variables with their valuations are listed from top to bottom
along the middle spine and repeated several times to the right. The #i-labeled
nodes to the left of the spine will be used to force the repair processor to guess a
valuation for the variable yi, before having seen the valuation of the next variable

Which XML schemas are streaming bounded repairable? 63

r0

r1

(y1, true)

#+
1 (y2, false)

#+
2 (y3, false)

#+
3 (y4, true)

#+
4

C+
j

ÐÐÐÐÐ→
(x4, true)+

ÐÐÐÐÐÐ→
(x3, false)+

ÐÐÐÐÐ→
(x2, true)+

ÐÐÐÐÐ→
(x1, true)+

Fig. 11 Possible outcome of a repair strategy.

xi+1. The repeated Cj-labeled nodes at the bottom of the spine designate a clause
Cj to be satisfied.

Formally, the DTD R defining the restriction language is given as follow (ν
denotes a boolean value among true, false):

R ∶ r → ⋃
ν ∈{true,false}

(x1, ν) ⋅
ÐÐÐ→
(x1, ν)+

(x1, ν) → ⋃
ν′ ∈{true,false}

#+
1 ⋅ (x2, ν

′) ⋅
ÐÐÐÐ→
(x2, ν

′)+

⋮

(xn−1, ν) → ⋃
ν′ ∈{true,false}

#+
n−1 ⋅ (xn, ν′) ⋅

ÐÐÐÐ→
(xn, ν′)+

(xn, ν) → ⋃
1≤j≤k

#+
n ⋅ C+j

Note that the above DTD is in a tree-shaped form.
Symmetrically, the target language will require some valuations µ1, . . . , µn for

the variables y1, . . . , yn to be emitted by the repair processor, in such a way that
all clauses of φ are satisfied. The target will also require the repair processor
to produce a “proof” of satisfiability for the clause that is designated by the
restriction. More precisely, a canonical repair strategy will modify the input tree by
first removing the spine of nodes labeled by (xi, νi), flattening in this way the tree.
While doing that, the repair process will also provide some valuations µ1, . . . , µn
for the remaining variables y1, . . . , yn. The order in which the valuations νi are
consumed and the valuations µi are produced must reflect the alternation of the
universal and existential quantifiers on the variables x1, y1, . . . , xn, yn. In particular,
the encoding of each valuation µi needs to be produced when the corresponding
valuation νi is consumed, and before seeing the next valuation νi+1, if i < n, or
the clause Cj . Formally, this policy is enforced by requiring the repair processor
to emit an opening tag of the form (yi, µi) before any occurrence of the opening
tag #i.

Once all valuations are fixed, the goal of the repair processor is to move the
forest C+j that comes from the input stream to some ancestor node. We explain

64 Pierre Bourhis et al.

how this goal can be accomplished, assuming that all clauses are satisfied by the
compound valuation. If the designated clause Cj is satisfied by a valuation yi = µi,
for some 1 ≤ i ≤ n, then the canonical repair will position the forest C+j just under
the node labeled with (yi, µi). This will ease the validation of the clause by the
target DTD. For instance, if Cj is some clause of φ satisfied by the valuation
y2 = false, then a possible outcome of the repair strategy is shown in Figure 11.
Otherwise, the clause Cj is satisfied by some evaluation xi = νi, and in this case
the canonical repair will promote the forest C+j , below the root and just before the

occurrences of the nodes
ÐÐÐÐ→
(xn, νn), . . . ,

ÐÐÐÐ→
(x1, ν1). Like before, this transformation

will ease the validation of the clause by the target DTD. Formally, the DTD T for
the target language is define as follows:

T ∶ r0 → r1 ⋅ (SomeX ∪ OK)

r1 → ⋃
ν ∈{true,false}

(y1, ν) ⋅ SomeY(y1, ν)

(y1, ν) → ⋃
ν′ ∈{true,false}

#+
1 ⋅ (y2, ν

′) ⋅ SomeY(y2, ν
′)

⋮

(yn−1, ν) → ⋃
ν′ ∈{true,false}

#+
n−1 ⋅ (yn, ν′) ⋅ SomeY(yn, ν′)

(yn, ν) → #+
n

where

– SomeX is the language that consists of all strings of the form C+j ⋅
ÐÐÐÐ→
(xn, νn)+ . . .

ÐÐÐÐ→
(x1, ν1)+, where ν1, . . . , νn ∈ {true, false} and Cj is a clause satisfied

under the valuation x1 = ν1, . . . , xn = νn, (recall that the number of literals in
each clause is fixed, so the language SomeX is recognized by a regular expression
of size polynomial in the size of φ)

– OK is the language that consists of all strings of the form
ÐÐÐÐ→
(xn, νn)+ . . .

ÐÐÐÐ→
(x1, ν1)+,

with ν1, . . . , νn ∈ {true, false},
– SomeY(yi, ν) is the union of the languages C+j , for all clauses Cj that are sat-

isfied under the valuation yi = ν.

We observe that the above DTD is in a tree-shaped form. We have already proved
that, when the quantified boolean sentence φ is valid, there exists a canonical
repair that transforms any tree from the restriction language to a tree in the target
language using a bounded number of edit operations. Conversely, if there exists
a tree-edit transducer that repairs every tree in R to a tree in T with uniformly
bounded cost, then one can easily construct from the outputs of this transducer
some functions fi(ν1, . . . , νi) that associate with each partial sequence of valuations
ν1, . . . , νi a corresponding valuation µi for the variable yi in such a way that every
clause Cj is satisfied by the compound valuation ν1, f(ν1), . . . , νn, f(ν1, . . . , νn).
This proves that φ is valid whenever R is streaming bounded repairable into T .

⊓⊔

We conclude the section by recalling an interesting result from [18] that con-
cerns a specific case of the streaming bounded repairability problem. Specifically,

Which XML schemas are streaming bounded repairable? 65

it follows from Proposition 6 and Proposition 7 in [18] that the complexity of
the streaming bounded repairability problem drops to polynomial time when the
restriction language contains all trees over a given alphabet Σ.

7 Conclusions

In this paper, we studied the streaming bounded repair problem over trees. Our
main result is a characterization of this problem in terms of a two-stack game
between Generator and Repairer. This game characterization includes and gener-
alizes most of the concepts introduced in previous papers [5,6,18]. For example,
trees in the restriction and target languages are abstracted by using strongly con-
nected components [18] and suitable games are used to characterize the existence
of streaming bounded repair strategies [6]. The game that characterizes streaming
bounded repairability is basically a reachability game over a system of prefix-
rewriting rules applicable to two distinct stacks: one stack is associated with the
restriction language and controlled by Generator, the other stack is associated with
the target language and controlled by Repairer. By exploiting the fact that the
stack controlled by Generator has bounded height, one could decide which of the
two players wins the reachability game. We use this fact to derive an alternating
polynomial-space (i.e. Exp) algorithm that solves the streaming bounded repair
problem and we show that the considered problem is indeed Exp-hard.

A weakness of our technique lies in the fact that we heavily depend on the top-
down determinism of the two schemas: in the presence of languages represented
by arbitrary tree automata decidability of the streaming bounded repair problem
is still open. A better understanding of the cyclic behaviour of tree automata is
thus needed in order to effectively characterize streaming bounded repairability
in the general case. Along this direction, we would like to highlight Proposition 6
from [18] which shows that the streaming bounded repair problem is decidable
when the restriction language is universal (i.e. unrestricted).

Our characterization shows that when Repairer has a strategy to win the reach-
ability game, one can effectively extract from it a streaming repair strategy as a
cascade composition of transducers Z1, Z2, Z3, and Z4 (see Section 4). One can
notice that, in the cascade composition of these transducers, only two stacks are
needed in order to produce the appropriate repairs: the two stacks are used essen-
tially to simulate the computation of the restriction and target automata on the
input tree and on the edited tree, respectively. An interesting open question is to
determine whether two stacks are really needed or whether a repair strategy can
be always implemented by a single-stack process. Furthermore, we do not know
the exact complexity of determining an optimal streaming repair strategy, where
optimality is measured in terms of maximal number of edits. In this respect, we
expect that further simplifications in our approach could lead to a better under-
standing of the problem and, eventually, to a complexity analysis of the problem
of determining the cost of an optimal repair strategy.

We also leave open some complexity gaps when the restriction and target lan-
guages are given by non-deterministic schemas. For example, we did not analyzed
in detail the case where the restriction and target languages are given by general
DTDs. We recall here that a DTD schema can be seen as a deterministic top-down
tree automaton only after determinizing each regular expression on the head of

66 Pierre Bourhis et al.

each rule of the DTD. From this observation and by applying our decision proce-
dure to a “determinized” DTD, we easily derive a double exponential algorithm
that decides streaming bounded repairability for general DTDs. Unfortunately,
Exp-hardness is the best lower bound that one can get from our results, which
is still far from the 2Exp upper bound that we just derived. We also recall that
similar gaps were left open in the string case [6]. We think that new insights are
required to close these complexity gaps.

Finally, our work highlights the issue of a proper notion of edit processor for
trees that have a canonical serialization as a string, as is the case of XML docu-
ments. Example 4 (see also [1]) shows that the ability of editing tree serializations
is more powerful than emitting tree edits. The example can be used to show that
there are XML schemas that can be repaired in streaming fashion with a bounded
number of edits on the input serializations, but for which there exist no bounded
repair processor of any sort (even non-streaming) that repairs using only tree ed-
its. We do not know if this last phenomenon can occur in the presence of more
limited schemas, such as DTDs.

Acknowledgements We would like to thank Michael Benedikt for the many helpful remarks
on the paper. The first author was supported by the EPRCS project “Query-Driven Data
Acquisition from Web-based Datasources” (EPSRC EP/H017690/1). The last two authors
were supported by the EPSRC project “Enforcement of Constraints on XML streams” (EPSRC
EP/G004021/1). The last author was also supported by CONICYT + PAI / Concurso Nacional
Apoyo al Retorno de Investigadores/as desde el extranjero – Convocatoria 2013 + 821320001.

References

1. Akutsu, T.: A relation between edit distance for ordered trees and edit distance for euler
strings. Information Processing Letters 100(3), 105–109 (2006)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM 56(3),
16 (2009)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT press Cambridge (2008)
4. Benedikt, M., Puppis, G., Riveros, C.: The cost of traveling between languages. In: Au-

tomata, Languages and Programming (ICALP), pp. 234–245 (2011)
5. Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: Proceedings

of the 26th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 335–344
(2011)

6. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. Journal
of Computer and System Sciences (JCSS) 79(8), 1302–1321 (2013)

7. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer
Science (TCS) 337(1), 217–239 (2005)

8. Boas, P.V.E.: The convenience of tilings. In: Complexity, Logic, and Recursion Theory,
pp. 331–363 (1997)

9. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Information and
Computation 142(2), 182–206 (1998)

10. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2007)

11. Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees. In:
Fundamentals of Computation Theory, pp. 68–79 (2005)

12. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Information Processing
Letters 109(1), 13–17 (2008)

13. Grädel, E., Thomas, W., Wilke, T.: Automata, logics, and infinite games: a guide to
current research, vol. 2500. Springer (2003)

14. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for streaming
XML. In: Proceedings of the 16th International Conference on World Wide Web (WWW),
pp. 1053–1062 (2007)

Which XML schemas are streaming bounded repairable? 67

15. Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata: past,
present, and future. In: Logic and Automata: History and Perspectives, Texts in Logic
and Games, vol. 2, pp. 505–530 (2008)

16. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML
schema. ACM Transactions on Database Systems (TODS) 31(3), 770–813 (2006)

17. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema languages
using formal language theory. ACM Transactions on Internet Technology (TOIT) 5(4),
660–704 (2005)

18. Puppis, G., Riveros, C., Staworko, S.: Bounded repairability for regular tree languages.
In: Proceedings of the 15th International Conference on Database Theory (ICDT), pp.
155–168 (2012)

19. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: Proceedings of the
21th ACM SIGMOD Symposium on Principles of Database Systems (PODS), pp. 53–64
(2002)

20. Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM (JACM) 26(3), 422–
433 (1979)

21. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the ACM
(JACM) 21(1), 168–173 (1974)

	Introduction
	Preliminaries
	Bounded repairability in the streaming setting
	From simulation games to repairs
	From repairs to simulation games
	Complexity results
	Conclusions

